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Goal



Probabilistic state space models

• Important in many fields:
• target tracking
• space-craft guidance
• machine learning
• speech processing
• audio signal processing
• biomedicine
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Inference in state space models

• Many efficient algorithms:
• Bayesian filter and smoother
• Kalman filters and smoothers
• Forward-backward algorithms
• Viterbi algorithm

• Not designed for parallelism:
• O(n) steps with nmeasurements
• Nice, but we can do better by 

parallel computing
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Filtering	pass	O(n)	

Smoothing	pass	O(n)	

by Armchair, CC-BY-
SA-4.0
https://commons.wiki
media.org/wiki/File:V
iterbi_Zero_Err.png



Graphics processing units

• Graphics processing unit (GPU) is a 
device with a huge number of cores

• Can run million(s) of execution 
threads simultaneously

• Very well suited for parallel 
computing

• Extensively used in deep learning 
nowadays (TensorFlow etc.)

• The programming model is a bit 
different than of "normal" CPUs
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NVIDIA Tesla K40 GPU by 
GBPublic_PR
CC BY-NC-SA 2.0

From CUDA Toolkit Documentation
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html



Parallelizing computations

• GPUs cannot just parallelize ”any” algorithm
• Need to be able to decompose problem into 

independent subproblems/tasks
• Embarrassingly parallel problems are easy
• Surprising many sequential algorithms can be 

reduced to “all-prefix-sum” computation
• For arbitrary “sum” operation, can be solved 

via divide-and-conquer in O(log n) parallel time
• Can we do this for inference in state-space 

models?

7

Task 1 Task 2 Task 3 Task 4 …

Combined result



Parallel inference in state-space models

• It turns out that it is possible:
• We can use the scan algorithm to 

get to O(log n)
• Requires associative operator 

reformulation of 
filtering/smoothing/Viterbi

• Suitable for GPUs and parallel 
clusters (or TPUs/NPUs).

• Perfect for e.g. TensorFlow and 
other similar frameworks
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Computed	in	parallel	

Up-pass	O(log	n)	 Down-pass	O(log	n)	



Algorithms



All-prefix-sums problem
• We have a sequence of numbers

[a1,...,an],
• We wish to compute the prefix sums

[a1,(a1 + a2),(a1 + a2 + a3),…]
• More generally, for an associative operator ✧ we want

[a1,(a1 ✧ a2),(a1 ✧ a2 ✧ a3),…]
• Simple sequential solution

s0 = 0 (or the neutral element for ✧)
for i = 1,...,n

si = si-1 ✧ ai
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• Associative operation ✧:
(a ✧ b) ✧c = a ✧ (b ✧ c)

• Neutral element 0:
0 ✧ a = a



Parallel all-prefix-sums (scan): up-sweep

• Consider, for example, sums
[1 2 3 4 5 6 7 8]

• We start by forming a binary 
tree of sums

• Can be parallelized in side-
direction -> O(log n) steps
• Actually, needs O(n) operations, 

but span complexity is O(log n)
• Also works for more general 

associative operators ✧
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In parallel



Parallel all-prefix-sums (scan): down-sweep

• Let’s assign a (left) value L
to each node as follows:
• Root has L = 0
• Every left child inherits the 

present value L
• Every right child gets the left 

child's sum plus current L
• At leaf we output si = L + ai

• We get all-prefix-sums in 
O(log n) steps.
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Demonstration with concatenation
Up:

abcdefgh

abcd           efgh

ab      cd      ef      gh
a   b   c   d   e   f   g   h

Down:
()abcdefgh

()abcd                          (abcd)efgh

()ab    (ab)cd           (abcd)ef            (abcdef)gh

()a   (a)b  (ab)c  (abc)d  (abcd)e  (abcde)f  (abcdef)g   
(abcdefg)h
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• Root has L = ‘’
• Every left child inherits the 

present value L
• Every right child gets the 

left child's string plus 
current L

• At leaf we output L plus ai



In-place algorithm by Blelloch (1990)
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-- up-sweep
1 3 3 4 5 6 7 8 
1 3 3 7 5 6 7 8 
1 3 3 7 5 11 7 8 
1 3 3 7 5 11 7 15 
1 3 3 10 5 11 7 15 
1 3 3 10 5 11 7 26 
1 3 3 10 5 11 7 36 
-- down-sweep
1 3 3 0 5 11 7 10 
1 0 3 3 5 11 7 10 
1 0 3 3 5 10 7 21 
0 1 3 3 5 10 7 21 
0 1 3 6 5 10 7 21 
0 1 3 6 10 15 7 21 
0 1 3 6 10 15 21 28 
-- result
1 3 6 10 15 21 28 36 

a = [1 2 3 4 5 6 7 8];
n = length(a);
s = a;

fprintf('-- up-sweep\n');
for d=0:log2(n)-1

for i=0:2^(d+1):n-1 % This is a parallel loop
i1 = i + 2^d;
i2 = i + 2^(d+1);
s(i2) = s(i1) + s(i2);
fprintf('%d ',s); fprintf('\n');

end
end

fprintf('-- down-sweep\n');
s(n) = 0;
for d=log2(n)-1:-1:0

for i=0:2^(d+1):n-1 % This is a parallel loop
i1 = i + 2^d;
i2 = i + 2^(d+1);
t = s(i1);
s(i1) = s(i2);
s(i2) = s(i2) + t;
fprintf('%d ',s); fprintf('\n');

end
end

s = s + a; % in parallel
fprintf('-- result\n');
fprintf('%d ',s); fprintf('\n');



Parallelization of Bayesian filtering

• Classical Bayesian filter:

• Parallelization elements:

• Associative operator:

• Final result:
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Ref: Särkkä, S. and García-Fernández, Á. F. (2021). Temporal Parallelization of Bayesian
Smoothers. IEEE Trans. Autom. Control, 66(1):299-306. arXiv:1905.13002



Parallelization of Kalman filtering

• In linear Gaussian case we 
can parametrize by

• The operator becomes

• The filter means will be in 
elements b, and covariances 
in C.
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Parallelization of Bayesian smoothing

• General elements & operator: • Linear Gaussian case:
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Parallel Extended and Sigma-Point 
Smoothers
• Extended Kalman filters and smoothers are non-linear versions 

of Kalman filters and smoothers
• IEKS iteratively linearized via Taylor series, and the applies a 

Kalman smoother
• The linearization can be made in parallel
• Kalman pass can be parallelized via the linear/Gaussian method

• Iterated sigma-point methods (iterated UKS etc.) can be 
interpreted as using statistical linear regression instead

• Can be parallelized in an analogous manner
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Ref: Yaghoobi, F., Corenflos, A., Hassan, S. and Särkkä. S. Parallel Iterated Extended and Sigma-
Point Kalman Smoothers (2021). Proc. ICASSP. arXiv:2102.00514



Parallel Inference in Hidden Markov 
Models (HMMs)
• HMMs are discrete-state 

state-space models
• Naturally formulated in terms 

of potentials

• Inference reduces to sum-
products/max-products for
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• The parallelization elements 
a are now the potentials

• Sum-product operator:

• Max-product operator is 
analogous with max()

• Viterbi can be done as well
Ref: Hassan, S. S., Särkkä, S. and García-Fernández, Á. F. Temporal

Parallelization of Inference in Hidden Markov Models. IEEE 
Trans.Sig.Proc., 69:4875-4887. arXiv:2102.05743



Implementations



Belloch in GPU with CUDA

• Numba has CUDA target, which can 
be used to generate GPU code

• Alternative would be C/C++ based 
CUDA which is more tedious to use

• For example, the implementations 
of array extension to 2^n and down 
pass look as on the right

• The loop over tree levels is in CPU
• Can be directly used in Google 

Colab (which has GPUs)
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Parallel filter and smoother with CUDA

• We can implement filters/smoothers by replacing “+” with the 
matrix operations

• It turns out that Numba only has a limited support for matrix 
routines in kernels

• Another option is to use C++ CUDA which supports Eigen 
matrix library

• Yet another option would be to use say OpenCL
• This can be a bit tedious (fun) though

22



Associative scan in TensorFlow & JAX

• TensorFlow already has the Blelloch algorithm:

• JAX also has it:

• These also have full matrix support – and automatic differentiation support
• TensorFlow probability even has new “parallel_filter” which is … well … 

implementation of Särkkä, S. and García-Fernández, Á. F. (2021).
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Parallel state-space inference in 
TensorFlow and JAX
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https://github.com/EEA-sensors/sequential-parallelization-
examples/tree/main/python/temporal-parallelization-bayes-smoothers

https://github.com/EEA-sensors/parallel-non-linear-gaussian-
smoothers



Experiments

Machine learning coffee seminar
Simo Särkkä



Results for linear Gaussian systems
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Results for non-linear systems
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Results for HMMs
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Conclusion



Summary

• All-prefix-sums can be computed in parallel using scan
algorithm of which one is by Blelloch.

• The “sum” can be any associative operation.
• Useful in especially for parallel computing in GPUs.
• Inference in probabilistic state-space models can be 

reformulated as a sequence of associative operations.
• We get parallel Kalman/Bayesian/Viterbi methods
• We can implement everything with CUDA on GPU, but 

TensorFlow and JAX already have the scan implemented.
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