
Parallel/distributed
methods for state-
space models
Simo Särkkä
Aalto University / Finnish Center for Artificial Intelligence (FCAI)

Contents

• Goal
• Algorithms
• Implementations
• Experiments
• Conclusion

2

Goal

Probabilistic state space models

• Important in many fields:
• target tracking
• space-craft guidance
• machine learning
• speech processing
• audio signal processing
• biomedicine

4

Inference in state space models

• Many efficient algorithms:
• Bayesian filter and smoother
• Kalman filters and smoothers
• Forward-backward algorithms
• Viterbi algorithm

• Not designed for parallelism:
• O(n) steps with nmeasurements
• Nice, but we can do better by

parallel computing

5

A B C D E F G H I	 J	 K L	 M N O P

Filtering	pass	O(n)	

Smoothing	pass	O(n)	

by Armchair, CC-BY-
SA-4.0
https://commons.wiki
media.org/wiki/File:V
iterbi_Zero_Err.png

Graphics processing units

• Graphics processing unit (GPU) is a
device with a huge number of cores

• Can run million(s) of execution
threads simultaneously

• Very well suited for parallel
computing

• Extensively used in deep learning
nowadays (TensorFlow etc.)

• The programming model is a bit
different than of "normal" CPUs

6

NVIDIA Tesla K40 GPU by
GBPublic_PR
CC BY-NC-SA 2.0

From CUDA Toolkit Documentation
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Parallelizing computations

• GPUs cannot just parallelize ”any” algorithm
• Need to be able to decompose problem into

independent subproblems/tasks
• Embarrassingly parallel problems are easy
• Surprising many sequential algorithms can be

reduced to “all-prefix-sum” computation
• For arbitrary “sum” operation, can be solved

via divide-and-conquer in O(log n) parallel time
• Can we do this for inference in state-space

models?

7

Task 1 Task 2 Task 3 Task 4 …

Combined result

Parallel inference in state-space models

• It turns out that it is possible:
• We can use the scan algorithm to

get to O(log n)
• Requires associative operator

reformulation of
filtering/smoothing/Viterbi

• Suitable for GPUs and parallel
clusters (or TPUs/NPUs).

• Perfect for e.g. TensorFlow and
other similar frameworks

8

A B C D E F G H I	 J	 K L	 M N O P

Computed	in	parallel	

Up-pass	O(log	n)	 Down-pass	O(log	n)	

Algorithms

All-prefix-sums problem
• We have a sequence of numbers

[a1,...,an],
• We wish to compute the prefix sums

[a1,(a1 + a2),(a1 + a2 + a3),…]
• More generally, for an associative operator ✧ we want

[a1,(a1 ✧ a2),(a1 ✧ a2 ✧ a3),…]
• Simple sequential solution

s0 = 0 (or the neutral element for ✧)
for i = 1,...,n

si = si-1 ✧ ai

10

• Associative operation ✧:
(a ✧ b) ✧c = a ✧ (b ✧ c)

• Neutral element 0:
0 ✧ a = a

Parallel all-prefix-sums (scan): up-sweep

• Consider, for example, sums
[1 2 3 4 5 6 7 8]

• We start by forming a binary
tree of sums

• Can be parallelized in side-
direction -> O(log n) steps
• Actually, needs O(n) operations,

but span complexity is O(log n)
• Also works for more general

associative operators ✧

11

1 2 3 4 5 6 7 8

3 7 11 15

10 26

36

In parallel

Parallel all-prefix-sums (scan): down-sweep

• Let’s assign a (left) value L
to each node as follows:
• Root has L = 0
• Every left child inherits the

present value L
• Every right child gets the left

child's sum plus current L
• At leaf we output si = L + ai

• We get all-prefix-sums in
O(log n) steps.

12

1 2 3 4 5 6 7 8

3 7 11 15

10 26

36

In parallel

0

0

0

0

3

1 3 6

10

10

10

21

2115 28
1 3 6 10 15 2821 36

Demonstration with concatenation
Up:

abcdefgh

abcd efgh

ab cd ef gh
a b c d e f g h

Down:
()abcdefgh

()abcd (abcd)efgh

()ab (ab)cd (abcd)ef (abcdef)gh

()a (a)b (ab)c (abc)d (abcd)e (abcde)f (abcdef)g
(abcdefg)h

13

• Root has L = ‘’
• Every left child inherits the

present value L
• Every right child gets the

left child's string plus
current L

• At leaf we output L plus ai

In-place algorithm by Blelloch (1990)

14

-- up-sweep
1 3 3 4 5 6 7 8
1 3 3 7 5 6 7 8
1 3 3 7 5 11 7 8
1 3 3 7 5 11 7 15
1 3 3 10 5 11 7 15
1 3 3 10 5 11 7 26
1 3 3 10 5 11 7 36
-- down-sweep
1 3 3 0 5 11 7 10
1 0 3 3 5 11 7 10
1 0 3 3 5 10 7 21
0 1 3 3 5 10 7 21
0 1 3 6 5 10 7 21
0 1 3 6 10 15 7 21
0 1 3 6 10 15 21 28
-- result
1 3 6 10 15 21 28 36

a = [1 2 3 4 5 6 7 8];
n = length(a);
s = a;

fprintf('-- up-sweep\n');
for d=0:log2(n)-1

for i=0:2^(d+1):n-1 % This is a parallel loop
i1 = i + 2^d;
i2 = i + 2^(d+1);
s(i2) = s(i1) + s(i2);
fprintf('%d ',s); fprintf('\n');

end
end

fprintf('-- down-sweep\n');
s(n) = 0;
for d=log2(n)-1:-1:0

for i=0:2^(d+1):n-1 % This is a parallel loop
i1 = i + 2^d;
i2 = i + 2^(d+1);
t = s(i1);
s(i1) = s(i2);
s(i2) = s(i2) + t;
fprintf('%d ',s); fprintf('\n');

end
end

s = s + a; % in parallel
fprintf('-- result\n');
fprintf('%d ',s); fprintf('\n');

Parallelization of Bayesian filtering

• Classical Bayesian filter:

• Parallelization elements:

• Associative operator:

• Final result:

15

Ref: Särkkä, S. and García-Fernández, Á. F. (2021). Temporal Parallelization of Bayesian
Smoothers. IEEE Trans. Autom. Control, 66(1):299-306. arXiv:1905.13002

Parallelization of Kalman filtering

• In linear Gaussian case we
can parametrize by

• The operator becomes

• The filter means will be in
elements b, and covariances
in C.

16

Parallelization of Bayesian smoothing

• General elements & operator: • Linear Gaussian case:

17

Parallel Extended and Sigma-Point
Smoothers
• Extended Kalman filters and smoothers are non-linear versions

of Kalman filters and smoothers
• IEKS iteratively linearized via Taylor series, and the applies a

Kalman smoother
• The linearization can be made in parallel
• Kalman pass can be parallelized via the linear/Gaussian method

• Iterated sigma-point methods (iterated UKS etc.) can be
interpreted as using statistical linear regression instead

• Can be parallelized in an analogous manner

18

Ref: Yaghoobi, F., Corenflos, A., Hassan, S. and Särkkä. S. Parallel Iterated Extended and Sigma-
Point Kalman Smoothers (2021). Proc. ICASSP. arXiv:2102.00514

Parallel Inference in Hidden Markov
Models (HMMs)
• HMMs are discrete-state

state-space models
• Naturally formulated in terms

of potentials

• Inference reduces to sum-
products/max-products for

19

• The parallelization elements
a are now the potentials

• Sum-product operator:

• Max-product operator is
analogous with max()

• Viterbi can be done as well
Ref: Hassan, S. S., Särkkä, S. and García-Fernández, Á. F. Temporal

Parallelization of Inference in Hidden Markov Models. IEEE
Trans.Sig.Proc., 69:4875-4887. arXiv:2102.05743

Implementations

Belloch in GPU with CUDA

• Numba has CUDA target, which can
be used to generate GPU code

• Alternative would be C/C++ based
CUDA which is more tedious to use

• For example, the implementations
of array extension to 2^n and down
pass look as on the right

• The loop over tree levels is in CPU
• Can be directly used in Google

Colab (which has GPUs)

21

Parallel filter and smoother with CUDA

• We can implement filters/smoothers by replacing “+” with the
matrix operations

• It turns out that Numba only has a limited support for matrix
routines in kernels

• Another option is to use C++ CUDA which supports Eigen
matrix library

• Yet another option would be to use say OpenCL
• This can be a bit tedious (fun) though

22

Associative scan in TensorFlow & JAX

• TensorFlow already has the Blelloch algorithm:

• JAX also has it:

• These also have full matrix support – and automatic differentiation support
• TensorFlow probability even has new “parallel_filter” which is … well …

implementation of Särkkä, S. and García-Fernández, Á. F. (2021).

23

Parallel state-space inference in
TensorFlow and JAX

24

https://github.com/EEA-sensors/sequential-parallelization-
examples/tree/main/python/temporal-parallelization-bayes-smoothers

https://github.com/EEA-sensors/parallel-non-linear-gaussian-
smoothers

Experiments

Machine learning coffee seminar
Simo Särkkä

Results for linear Gaussian systems

26

Results for non-linear systems

27

Results for HMMs

28

Conclusion

Summary

• All-prefix-sums can be computed in parallel using scan
algorithm of which one is by Blelloch.

• The “sum” can be any associative operation.
• Useful in especially for parallel computing in GPUs.
• Inference in probabilistic state-space models can be

reformulated as a sequence of associative operations.
• We get parallel Kalman/Bayesian/Viterbi methods
• We can implement everything with CUDA on GPU, but

TensorFlow and JAX already have the scan implemented.

30

Some references

Blelloch, G. E. (1989). Scans as primitive parallel operations. IEEE TransComp.
Blelloch, G. E. (1990). Prefix sums and their applications. TechRep CMU-CS-90-190.
Cook, S. (2013). CUDA programming: a developer’s guide to parallel computing with GPUs.
Murphy, K. P. (2012). Machine Learning: a Probabilistic Perspective. MIT Press.
Särkkä, S. (2013). Bayesian Filtering and Smoothing. Cambridge University Press.
Särkkä, S. and García-Fernández, Á. F. (2021). Temporal Parallelization of Bayesian

Smoothers. IEEE Trans. Autom. Control, 66(1):299-306. arXiv:1905.13002
Yaghoobi, F., Corenflos, A., Hassan, S. and Särkkä. S. Parallel Iterated Extended and

Sigma-Point Kalman Smoothers (2021). Proc. ICASSP. arXiv:2102.00514
Hassan, S. S., Särkkä, S. and García-Fernández, Á. F. (2021). Temporal Parallelization

of Inference in Hidden Markov Models. IEEE Trans.Sig.Proc., 69:4875-4887
arXiv:2102.05743

31

