
Basics of Spectral Graph Theory

Konstantin Avrachenkov (Inria, France)

IEEE SPS School at Aalto University, 29 March 2022



Plan

1. Motivations and definitions
(Consensus, Network sampling, Epidemics, SSL, SC)

2. Main approaches in random matrix theory
(Method of moments, Stieltjes transform)

3. Spectra of random graphs
(ER, SBM, RGG, Soft GBM)



Motivations and definitions (Consensus)

Consider n agents that have m communication links.

Each agent i has a local state xi and the agents would like to
synchronize their states.

Namely, the goal is to construct an algorithm such that

xi(t)→ x̄ =
1

n

n∑
i=1

xi(0), as t →∞.



Motivations and definitions (Consensus)

The communication structure can be represented by a graph
G = (V ,E ) with n = |V | and m = |E |.

Figure: Graph Example with n = 6 and m = 7 (from Wikipedia).

A graph can be described by the adjacency matrix A = (aij):

aij =

{
1, if there is a link between i and j ,
0, otherwise.

In the above example a12 = 1 but a13 = 0.



Motivations and definitions (Consensus)

One of the simplest consensus algorithms in continuous time is
described by

ẋi =
n∑

j=1,j 6=i

aij(xj − xi).

Or in the matrix form

ẋ = −Lx ,

where L = D − A is the (combinatorial) Laplacian and
D = diag(di) = diag(

∑n
j=1 aij) is the diagonal matrix of

nodes’ degrees.
The rate of convergence is dominated by the Laplacian
spectral gap:

γ(L) = min
k
{λk(L) : λk(L) > 0},

where λk is the kth eigenvalue of L. Note that L1 = 0.



Motivations and definitions (Consensus)

Let us state properties of the adjacency matrix A and
Laplacian L:

If A is symmetric (here for most of the time we consider
undirected graphs), the eigenvalues are real and the spectral
theorem applies:

A =
n∑

i=1

λi(A)viv
T
i ,

where vi is an eigenvector associated with the ith eigenvalue.

L = D − A = diag(A1)− A

Since xTLx =
∑

i∼j(xi − xj)
2 ≥ 0, L is positive semidefinite

and λi(L) ≥ 0. Note that L1 = 0 and hence λ1(L) = 0.



Motivations and definitions (Epidemics)

Consider the following model of epidemics on a network:

If Xi(t) = 0, the node is healthy at time t and Xi(t) = 1,
otherwise.

A node recovers with rate 1 and contaminates a neighbour
with rate β. Namely,

Xi : 1→ 0,with rate 1;

Xi : 0→ 1,with rate β
n∑

j=1

aijXj .



Motivations and definitions (Epidemics)

If the following condition on the spectral radius holds

ρ(A) = max
k
|λk(A)| < 1

β
,

the epidemics dies out fast, i.e.

P[X (t) 6= 0] ≤
√

n||X (0)||1e(βρ(A)−1)t ,

and

E [time to extinction] ≤ log(n) + 1

1− βρ(A)
.

However, if this condition on the Laplacian spectral gap holds

γ(L)

2
>

1

β
,

the epidemics survives for an exponentially long time.



Motivations and definitions (Network sampling)

Analysing (online) social networks one would like to know:

I How young is given social network?

I How many friends has an average network member?

I What proportion of population supports some political party?

I etc



Motivations and definitions (Network sampling)

All such questions are related to the problem of estimating an
average of a function f (·) defined on the network nodes.

Let G = (V ,E ) be an undirected graph representing a social
network.

Then, we are interested to estimate

µ(G ) =
1

n

∑
v∈V

f (v). (1)



Motivations and definitions (Network sampling)

Uniform node sampling is typically very costly and biased.

One work-around can be achieved by using the random walk
based sampling.

Let {Xt , t = 0, ...,T} are nodes sampled by T steps of the
random walk.



Motivations and definitions (Network sampling)

Since the standard random walk visits more often large degree
nodes, the following estimator

µ̂(T )(G ) =
1

T

T∑
t=1

f (Xt)

is biased.

One way around to remove the bias is to use
Metropolis-Hastings chain with the following transition matrix

PMH
ij =

{
1

max(di ,dj )
if j 6= i

1−
∑

k 6=i
1

max(di ,dk )
if j = i .



Motivations and definitions (Network sampling)

By using the CLT for MCs, one can show the following central
limit theorem for MH Chain.

Proposition
(Central Limit Theorem for MH) For MH Markov chain, it
holds that

√
T
(
µ̂
(T )
MH(G )− µ(G )

)
D−→ N (0, σ2

MH), as T →∞,

where σ2
MH = 2

n
f TZf − 1

n
f T f −

(
1
n
f T1

)2
and where

Z = [I − PMH + 1
n

11T ]−1 is the fundamental matrix.

There are nice expressions and bounds for σMH in terms of the
eigenvalues of PMH .



Motivations and definitions (Network sampling)

An even more efficient estimator is the Respondent Driven
Sampling estimator (RDS-estimator):

µ̂
(T )
RDS(G ) =

∑T
t=1 f (Xt)/d(Xt)∑T

t=1 1/d(Xt)
.

Here the bias towards large degree nodes is corrected by the
estimator and we can sample nodes with the standard random
walk.



Motivations and definitions (Network sampling)

Note that the transition probability matrix of the standard
random walk can be expressed as

P = D−1A,

where D = diag(di) is the diagonal matrix of nodes’ degrees.

It is often convenient to work with the symmetrized version

Ã = D−1/2AD−1/2,

which has the same spectrum,

and with the normalized Laplacian:

L = I − Ã = I − D−1/2AD−1/2,

with λi(L) ∈ [0, 2] and λ1(L) = 0.



Motivations and definitions (Semi-supervised

learning)

Finally, let us consider graph-based semi-supervised learning.

Now G = (V ,E ) is the similarity graph on data points, e.g., G
can be kNN graph or RBF based graph with

wij = exp(−||Xi − Xj ||2/γ),

where Xi is the normalized vector of attributes of the ith data
point. Then,

aij = 1{wij ≥ θ},

where θ regulates the sparsity of the graph.



Motivations and definitions (Semi-supervised

learning)

Typically, obtaining labelled data is expensive and
time-consuming.

The main idea of the graph-based semi-supervised learning is
to propagate information from few available labelled points to
unlabelled data.

Suppose we would like to classify n data points into K classes.

Define an n × K matrix Y as

Yik =

{
1, if i ∈ Vk , i.e., point i is labelled as a class k point,

0, otherwise.

We refer to each column Y∗k of matrix Y as a labeling
function.



Motivations and definitions (SSL)

Then, one fairly general class of SSL methods can be
expressed as an optimization problem

min
F
{

N∑
i=1

N∑
j=1

aij‖diσ−1Fi∗−djσ−1Fj∗‖2+µ
N∑
i=1

di
2σ−1‖Fi∗−Yi∗‖2}

Fik > Fik ′ , ∀k ′ 6= k ⇒ Data point i is classified into class k .

Now we have two parameters µ and σ.



Motivations and definitions (SSL)

The solution can in fact be given in the explicit form:

F∗k =
µ

2 + µ

(
I − 2

2 + µ
D−σADσ−1

)−1
Y∗k ,

for k = 1, ...,K .

A simple and efficient way to compute F∗k is by power
iterations:

F
(t+1)
∗k =

2

2 + µ
D−σADσ−1F

(t)
∗k +

µ

2 + µ
Y∗k , t = 1, 2, ...

The spectral gap of D−σADσ−1 dictates the rate of
convergence.



Motivations and definitions (SSL)

In particular cases, we have

I if σ = 1, the Standard Laplacian method:
F∗k = µ

2+µ
(I − 2

2+µ
D−1A)−1Y∗k ,

I if σ = 1/2, the Normalized Laplacian method:

F∗k = µ
2+µ

(I − 2
2+µ

D
−1
2 AD

−1
2 )−1Y∗k ,

I if σ = 0, PageRank based method:
F∗k = µ

2+µ
(I − 2

2+µ
AD−1)−1Y∗k .



Motivations and definitions (Graph clustering)

Graph clustering (or unsupervised learning) is a very
established research area with many applications.

Figure: From [Abbe 2017]



Motivations and definitions (Graph clustering)

Consider the vector x = (xi) ∈ {−1, 1}n corresponding to the
partition V = V1 t V2:

xi =

{
1, if i ∈ V1

−1, if i ∈ V2

.

Take the adjacency matrix A = (Aij), the diagonal matrix D,
where Dii =

∑
j Aij , and the Laplacian L = D − A. Then,

Cut(V1,V2) =
∑

i∈V1,j∈V2

Aij =
1

4

∑
i ,j∈[n]

Aij(xi − xj)
2 ∝ xTLx .



Motivations and definitions (Graph clustering)

Continuous relaxation:

arg min
|V1|=|V2|=n/2

Cut(V1,V2) = arg min
x∈{−1,1}n

x⊥1n

xTLx

−→ arg min
x∈Rn

||x ||22=
√
n

x⊥1n

xTLx

Spectral clustering based on eigenvectors of Laplacian matrix:

I First eigenvector of L is v (1) = (1, . . . , 1)T with λ1 = 0;

I Second eigenvector or Fiedler vector v (2) provides the
solution to the relaxed minimum cut problem;

I Cluster node i according to the sign of v
(2)
i .

The difficulty depends on how far λ2(L) is from
the rest of eigenvalues.



Main approaches in random matrix theory

We demonstrate the main approaches in random matrix theory
on the classical Wiegner matrices.

Definition
A Wiegner matrix Mn is a symmetric real valued matrix with
upper-triangular independent zero mean and unit variance
entries (of course, Mn,ij = Mn,ji).

Figure: Histogram of eignevalues, n = 5000 (from Wolfram
MathWorld).



Main approaches in random matrix theory

Define the Emprirical Spectral Distribution (ESD)

µn = µ(Xn) =
1

n

n∑
i=1

δ(x − λi(Xn)).

Theorem (Semicircular law)
Let Mn be the Wiegner ensemble. Then the ESDs of
Xn = 1√

n
Mn converge weakly, almost surely (and hence, also in

probability and in expectation) to the Wigner semi-circular
distribution

µsc(x)dx =
1

2π

√
4− x21{|x | ≤ 2}dx . (2)



Main approaches in RMT (Method of moments)

Theorem (Carleman’s condition)
Let µ be a distribution and denote m1,m2, ... its sequence of
moments which are assumed to be all finite. If the condition

∞∑
k=1

m
− 1

2k
2k = +∞,

is fulfilled, then µ is uniquely determined by the sequence
m1,m2, ...

Note that a slightly easier condition is |mk | ≤ CDkk!.



Main approaches in RMT (Method of moments)

Thus, we can prove the convergence by analyzing the moments

mk(µn) =

∫
R
xkdµn =

1

n

n∑
i=1

λki (Xn) =
1

n
trX k

n

or due to good concentration of measure, even the expectation

m̄k(µn) =
1

n
E [trX k

n ] =
1

n

n∑
i1,...,ik=1

E [xi1i2 · · · xik−1ikxik i1]. (3)

Each term in (3), i = i1i2 · · · ik i1 corresponds to a closed path
consisting of k edges.



Main approaches in RMT (Method of moments)

Since the entries of Xn have mean zero and are independent
(up to the symmetry), the summand E [xi1i2 · · · xik−1ikxik i1] will
be zero unless every edge in the path is traversed an even
number of times.

Thus, we already see that the odd moments should be zero.

Furthermore, there are at most k/2 unique edges and at most
k/2 + 1 distinct vertices.

Let the weight t of a sequence i be the number of distinct
indices i1, ..., ik . By the above observation, a nonzero term in
(3) have a weight t ≤ k/2 + 1.



Main approaches in RMT (Method of moments)

Let us show that the terms with t < k/2 + 1 are negligible as
n→∞.

Given i of weight t, there are n(n − 1) · · · (n − t + 1) ≤ nt

sequences equivalent to it.

The contribution of each term in this equivalence class is

1

n
E [xi1i2 · · · xik−1ikxik i1] = O

(
1

n

1
√
n
k

)
Thus, the total contribution to (3) is at most

O

(
nt

nk/2+1

)
→ 0, n→∞.

Then, the terms with t = k/2 + 1 with k even correspond to
trees, and a sequence i1i2 · · · ik i1 represents a closed path on
such trees which traverses each edge exactly twice, once in
each direction.



Main approaches in RMT (Method of moments)

Counting such trees gives for k/2 even

mk(µn)→ 1

k/2 + 1

(
k

k/2

)
, n→∞,

which are the even moments of the semicircular distribution.



Main approaches in RMT (Stieltjes transform)

The next method is based on Stieltjes transform of ESD:

sn(z) =

∫
R

1

x − z
dµn(x)

=
1

n
tr(Xn − zIn)−1 =

1

n
tr(

1√
n
Mn − zIn)−1,

for z ∈ C\R. Properties of Stieltjes transform:

sn(z) = −1

z

[
1 +

1

zn
tr

(
Mn√
n

)
+

1

z2n
tr

(
Mn√
n

)2

+ ...

]

and hence

sn(z) = −1

z
− 1

z2n
O(1).



Main approaches in RMT (Stieltjes transform)

Imaginary part of sn(z) is positive for z in the upper half plane.

sn(z) is analytic at all points in the upper half plane.

For z such that Im(z) > 0,

|sn(z)| ≤ 1

Im(z)
. (4)

The density function can be recovered as follows:

µ(x) = lim
ε→0+

s(x + iε)− s(x − iε)

2πi
.

The Stieltjes transform of the semicircular law:

ssc(z) =
−z +

√
z2 − 4

2
.



Main approaches in RMT (Stieltjes transform)

First we show that we can work only with the expected
Stieltjes transform.

Lemma
For fixed z in the upper half plane,

|sn(z)− E [sn(z)]| → 0, almost surely. (5)

Proof outline: Note that

√
n(n − 1)sn−1

( √
n

√
n − 1

z

)
=

√
n(n − 1)

1

n − 1
tr

(
Mn−1
√
n − 1

−
√
n

√
n − 1

zI

)−1

=

√
n

√
n − 1

( √
n

√
n − 1

)−1

tr

(
Mn−1
√
n
− zI

)−1

= tr

(
Mn−1
√
n
− zI

)−1

.



Main approaches in RMT (Stieltjes transform)

Next, consider √
n(n − 1)sn−1

( √
n

√
n − 1

z

)
− nsn(z)

= tr

(
Mn−1
√
n
− zI

)−1

− tr

(
Mn
√
n
− zI

)−1

=

n−1∑
i=1

1

λi (Mn−1)/
√
n − z

−
n∑

i=1

1

λi (Mn)/
√

n − z
.

Then, by using Cauchy’s Interlace Theorem, i.e.

λ1(Mn) ≤ λ1(Mn−1) ≤ λ2(Mn) ≤ ... ≤ λn−1(Mn−1) ≤ λn(Mn)

and the bound (4), we can conclude that

n−1∑
i=1

1

λi (Mn−1)/
√
n − z

−
n∑

i=1

1

λi (Mn)/
√

n − z
= O(1).

Next, divide the both sides of the above equation by n.



Main approaches in RMT (Stieltjes transform)

√
n − 1

n
sn−1

( √
n

√
n − 1

z

)
− sn(z) = O

(
1

n

)
(6)

And hence, by continuity of Stieltjes transform,

sn(z) = sn−1(z) + O

(
1

n

)
.

Then, applying McDiarmid’s inequality, yields

P

[
|sn(z)− E [sn(z)]| ≥

κ
√
n

]
≤ Ce−cκ2

,

for some absolute constants c and C . Taking κ = εn1/4 and
applying Borel-Cantelli Lemma, we prove the statement

|sn(z)− E [sn(z)]| → 0, a.s.



Main approaches in RMT (Stieltjes transform)

Next, we can concentrate on E [sn(z)]. The Schur complement
plays a crucial role. Let

An =

[
An−1

1√
n
Y

1√
n
Y T 1√

n
Mn,nn − z

]
,

where An = 1√
n
Mn − zI , An = 1√

n
Mn−1 − zI and Y is the

rightmost column of Mn with the last entry removed. Then,
we can write

A−1n,nn =
1

( 1√
n
Mn,nn − z)− 1

n
Y T ( 1√

n
Mn−1 − zI )−1Y

=
1

−z − 1
n
Y T ( 1√

n
Mn−1 − zI )−1Y + o(1)

.



Main approaches in RMT (Stieltjes transform)

We note that by symmetry

E [sn(z)] = E

[
1

n
tr

(
Mn√
n
− zI

)−1]

= E

[(
Mn√
n
− zI

)−1
nn

]
= E [A−1n,nn].

Thus,

E [sn(z)] = E

[
1

−z − 1
n
Y T ( 1√

n
Mn−1 − zI )−1Y + o(1)

]
.



Main approaches in RMT (Stieltjes transform)

Let Rn−1 =
(

1√
n
Mn−1 − zI

)−1
. We would like to show that

1

n
Y TRn−1Y = E [sn(z)] + o(1). (7)

Let us use double conditioning

E [E [Y TRn−1Y |R]] = E

[
n−1∑
i=1

n−1∑
j=1

E [yi rijyj |R]

]
= E

[
n−1∑
i=1

rii

]

Then, with the help of (6), we get

1

n
E [trRn−1] = E

[√
n − 1

n
sn−1

( √
n√

n − 1
z

)]
= E [sn(z)]+o(1).



Main approaches in RMT (Stieltjes transform)

Thus, we obtain

E [sn(z)] =
1

−z − E [sn(z)]
+ o(1).

Since the imaginary part of sn(z) should be positive, the fixed
point solution of the above equation is

s(z) =
−z +

√
z2 − 4

2
,

which coincides with Stieltjes transform of semicircular law.



Spectra of random graphs (Erdős-Rényi model)

Erdős-Rényi random graph model can be described by the
adjacency matrix

Aij = Aji ∼ Ber(p(n)).

Note that A is not Wiegner ensemble.
Let us introduce the centered and normalized version:

Â = γ(n)A = Ā + Ã,

where
Ãij ∼ Cen(p, γ),

and where

Cen(p, γ) =

{
γ(1− p), w.p. p;
−γp, w.p. 1− p;

with γ(n) = (np(n)(1− p(n)))−1/2.



Spectra of random graphs (Erdős-Rényi model)

In the case of ER model we need to check Lindeberg’s
condition:

lim
n→∞

max
i=1,...n

n∑
j=1

∫
|x |>θ

x2dPÃij
(x) = 0, ∀θ.

For the Cen(p(n), γ(n)) the above condition results in the
requirement

p(n) = ω(n−1), as n→∞,

or equivalently, the average degree np(n) should diverge.
Then,

µ(Ã)
a.s.−→ µsc .



Spectra of random graphs (Erdős-Rényi model)

Note that a single eigenvalue has a negligible contribution to
ESD when n→∞.

Therefore, one needs to study the spectral norm of a random
matrix separately.

Theorem (Vu)
Let M be a Wigner matrix with independent random elements
Mij , i , j = 1, . . . n having zero mean and variance at most
σ2(n). If the entries are bounded by K (n) and there exist a
constant C ′ such that σ(n) ≥ C ′n−1/2K (n) log2(n), then there
exists a constant C such that with high probability (w.h.p.)

‖M‖2 ≤ 2σ(n)
√
n + C (K (n)σ(n))1/2n1/4log(n). (8)



Spectra of random graphs (Erdős-Rényi model)

The above result applies to ER model with K =
√

1−p(n)
np(n)

.

Namely, if the link probability p(n) satisfies an additional
condition

p(n) ≥ C ′′
log 4(n)

n
,

we have w.h.p.

‖ÃER‖2 ≤ 2 + C 4

√
1− p(n)

np(n)
log n.

This means that the edge of the semicircular law indeed
sharply defines the edge of the limiting spectral distribution.



Spectra of random graphs (Erdős-Rényi model)

It is also interesting to investigate the spectral norm of ÂER .

First note that by the inequality

|FA(x)− FB(x)| ≤ rank(A− B)

n
,

and the fact that A
ER

= ÂER − ÃER has unit rank for any n,
the limiting spectral distribution of ÂER is also the semicircular
law.

The spectral norm of the two matrices ÂER and ÃER are
different, because the largest eigenvalue changes when a unit
rank matrix is added.



Spectra of random graphs (Erdős-Rényi model)

From Bauer-Fike Theorem, we have

|λi(ÂER)− λi(ĀER)| ≤ ||ÃER||2,

and in particular ∣∣∣λn(ÂER)− γ(n)np(n)
∣∣∣ ≤ 2.

Note that, for dense and sparse networks, γ(n)np(n)� 2.
Hence the above result implies that

λn(ÂER)→ nγ(n)pn a.s.



Spectra of random graphs (SBM)

Consider a random graph with n nodes and M communities
Ωm, for m = 1, . . . ,M , of equal sizes K = n/M , which is
assumed to be an integer.

Aij = Aji ∼ Ber(pm), if i , j ∈ Ωm

Aij = Aji ∼ Ber(p0), if i ∈ Ω` and j ∈ Ωm, ` 6= m.
(9)

This random graph is called Stochastic Block Model (SBM).



Spectra of random graphs (SBM)

We shall again need to consider the normalized and centered
adjacency matrix:

Ãij = Ãji ∼ C(pm, γ) if i , j ∈ Ωm

Ãij = Ãji ∼ C(p0, γ) if i ∈ Ω` and m ∈ Ωm

with ` 6= m,

(10)

with γ(n) = (np∗(1− p∗))−1 where p∗ = maxm=1,...M pm.
Additionally, we assume that all the probabilities pm scales at
the same rate, i.e. limn→+∞

pi
pj

= cij for some cij > 0.



Spectra of random graphs (SBM)

Let us first present the following general result:

Theorem (Girko)
Let the symmetric matrix M satisfy Lindeberg’s condition.
Additionally, the variances σ2

ij of its entries satisfy the
conditions

sup
n

max
i=1,2,..n

∑
j

σ2
ij <∞

and inf i ,j nσ
2
ij = c > 0. Then, as n→ +∞, almost surely

FM(x , n), the spectral distribution function of M converges for
any x to a deterministic distribution function S(x) whose
Stieltjes transform s(z) is given by

s(z) =

∫
dS(x)

x − z
= lim

n→∞

1

n

n∑
i=1

ci(z , n)



Spectra of random graphs (SBM)

where ci(z , n) is the unique solution to a (possibly infinite)
system of equations

ci(z , n) =


−zI −(δpl∑

s

cs(z , n)σ2
sl

)∞
p,l=1

−1
ii

.

We can specify the above general result to SBM.



Spectra of random graphs (SBM)

Corollary
Let Ã be the normalized centered SBM adjacency matrix. If
pm(n) ∈ ω(n−1), then almost surely the eigenvalue distribution
function converge weakly to a distribution function with
Stieltjes transform

s(z) =
M∑

m=1

cm(z) (11)

being cm(z) the unique solution to the system of equation

cm(z) =
−1/M

z + ςmcm(z) + ς0
∑

` 6=m c`(z)
, m = 1, ...,M , (12)

with ς` = lim
n→+∞

p`(1− p`)

p∗(1− p∗)
.



Spectra of random graphs (SBM)

The above result implies that in general the limiting spectral
distribution of an SBM is not a semicircular law any longer.
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Figure: Comparison between empirically obtained spectrum
(histogram) and explicit solution(line) of 2-community SBM
adjacency matrix.



Spectra of random graphs (SBM)

Similarly to ER model, we can also investigate the edge of the
limiting distribution and the isolated eigenvalues of ÂSBM .

Specifically, if p0(n) satisfies the inequality p0(n) ≥ C ′ log
4(n)
n

for some constant C ′ > 0.
Then, there exists a constant C > 0 such that w.h.p.

‖Ã‖2 ≤ 2
√

M−1 (1 + (M − 1)ς0) + C 4

√
1− p0(n)

np0(n)
log(n).



Spectra of random graphs (SBM)

We also observe that ĀSBM = γ(n)P ⊗ JK , where

P =


p1 p0 . . . p0

p0 p2
. . . p0

...
. . .

...
p0 . . . . . . pM

 , JK =


1 1 . . . 1

1 1
. . . 1

...
. . .

...
1 . . . . . . 1

 ,

where the size of JK is K × K .



Spectra of random graphs (SBM)

Next, note that

λi ,j(A⊗ B) = λi(A)λj(B)

and if the SBM is homogeneous (p1 = p2 = ... = pM),
λM(P) = p1 + (M − 1)p0, λi(P) = p1 − p0 for i ≤ M − 1, and
λj(JK ) = K = n/M , which leads to

λn(ÂSBM) = γ(n)
n

M
(p1 + (M − 1)p0),

λi(Â
SBM) = γ(n)

n

M
(p1 − p0), i = n −M + 1, ..., n − 1.

We also conclude that in this case the spectral gap has a
simple expression: γ(n)np0.



Spectra of random graphs (SBM)
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Figure: Extremal eigenvalues and LSD of SBM normalized
adjacency matrix.



Spectra of random graphs (SBM)

Let us mention that the limiting spectral distribution of the
normalized Laplacian

L = I − D−1/2AD−1/2

can be easily obtained from the limiting spectral distribution of
the normalized adjacency matrix.

Namely, let P
′

= D−1/2AD−1/2 and consider the case of two
communities. We can show that the ESD of the matrix
1
2

√
nP

′
is asymptotically equivalent to the ESD of the matrix

1√
n
A
′′
, defined as

A
′′

ij =


Aij/(p1 + p0), if i , j ∈ Ω1

Aij/(p2 + p0), if i , j ∈ Ω2

Aij/
√

(p1 + p0)(p2 + p0), otherwise.



Spectra of random graphs (Soft GBM)

Model parameters
number of nodes n, geometric dimension d and two
measurables functions Fin,Fout : Td → [0, 1].

Model definition

I Set of nodes V = {1, . . . , n};

I Each node i has random position Xi on the torus Td ;

I Each node i gets randomly community label σi ∈ {−1, 1};

I Each pair of nodes (i , j) is connected with probability

pij =

{
Fin (Xi − Xj) if σi = σj

Fout (Xi − Xj) if σi 6= σj



Spectra of random graphs (Soft GBM)

SGBM important particular cases:

I An SGBM where Fin(x) = pin and Fout(x) = pout is an
instance of Stochastic Block Model (SBM).

I An SGBM where Fin(x) = 1(|x | ≤ rin),
Fout(x) = 1(|x | ≤ rout) with rin > rout is an instance of
Geometric Block Model (GBM) introduced in

I Euclidean random graphes with known node locations are
used in many ML applications.



Spectra of random graphs (Soft GBM)

For k ∈ Zd and F : Td → R we define the Fourier transform

F̂ (k) =

∫
Td

F (x)e−2iπ〈k,x〉 dx

and assume that Fin(0),Fout(0) are equal to the Fourier series
of Fin(·),Fout(·) evaluated at 0.



Spectra of random graphs (Soft GBM)

Theorem
Let λ1, . . . , λn be the eigenvalues of A, and

µn(x) =
n∑

i=1

δ(x − λi/n)

the ESD of the matrix 1
n
A. Then, almost surely µn(x)

converges weakly to

µ(x) =
∑
k∈Zd

δ

(
x − F̂in(k) + F̂out(k)

2

)
+δ

(
x − F̂in(k)− F̂out(k)

2

)
.

Note that the above result is for fairly dense networks.
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