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Machine
Learning (?)

• The Earth is huge and ranges from flat to rugged
• We cannot resolve every process explicitly
• The system is chaotic
• Some processes are not well understood
• All components are connected in a non-trivial way
• We have a HUGE number of observations to deal 

with and even more NWP/climate model data
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• Data monitoring
• Real time quality control
• Anomaly detection
• Data cleaning and filtering for longer, historic time series
• Observation spatial interpolation / interpolation to unobserved

areas
• Data fusion of different sources
• Guided decision making
• Correction of observation error
• Filling of missing values in time series
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• learn govering equations
• perform non-linear bias correction of observations
• Define Bias predictors
• Operational operators
• Define optical properties of hydrometeors / aerosols
• Emulate conventional tools to improve efficiency
• Perturb the data to generate an ensemble
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Static fields

Upscaled 135 m wind speed• Adjustments of forecast products for renewable energy
applications, nowcasting/forecasting of severe weather

• Improvements of forecast products for sub-seasonal to
seasonal prediction

• Feature detection
• Uncertainty quantification and „cheap“ ensembling
• Low complexity models for research purposes
• Data driven forecasting
• Generation of synthetic data / data augmentation for

algorithm training
• Increasing of spatial-temporal resolution (< 1 km, < hourly)



Post-processing – why is it important
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Post-processing – why is it important

MERRA2

ERA5

COSMO6
• Grid resolution too coarse
• Temporal resolution for some

applications too coarse
• Temporal horizon not long enough
• NWP models prone to different error

sources (data, assimilation, 
parametrizations), bias / spread need
to be corrected

ECMWF operational global model (~ 9 km) – Eastern Austria

INCA operational analysis 1 km– Eastern Austria

AROME operational model (2.5 km) grid (NWP model)



• „classical“ as age/idea of methods is >= 50 years dating back to the 1960ies

• Are based on (current) observations and/or recent weather conditions and don’t use numerical models (‘data driven’)

• Observations of the initial (predictor) and resultant (predictands) weather conditions are a must have

• Example: forecast the temperature for tomorrow with input consisting of observational data available at the time the forecast was
issued:

Post-processing – „classical“ methods

  (1)   ...............     0XfY Ct 


Yt = predictand (dependent variable) at time ‘t’

X0 = predictor vector of observational data (independent variables) available at initial time 0

• Works good for short ranges and very long ranges, no skill in medium range (~24h to 10 days)

• Best under persistend weather conditions with low variability



Post-processing – „classical“ methods

Perfect prognosis / perfect prog

 The need to accurately predict surface weather elements, led to
the development of Perfect Prognosis Method (PPM) (Klien et al.,
1959).

 objective method, in which, a concurrent relation is developed
between the parameter to be predicted and the observed
circulation around the location of interest, using several years of
data

 based on the assumption that numerical model forecasts are
“perfect”

 numerical models are not perfect but this approach gives an
estimate of what to expect, if numerical models are correct

 does not require numerical model data for development, uses
numerical output when equations are applied operationally

 make sure that variables used as ‘Predictors’ in development of
Perfect Prognosis Equations will be available from NWP models for
operational purposes



Post-processing – „classical“ methods

Analog-based methods - AnEn

• the current state of the atmosphere is compared with a repository of other, historical states of the atmosphere to 
determine the most similar scenario in the past (an analog) (Van den Dool, 1989; Hamill and Whitaker, 2006; Delle
Monache et al., 2011; Delle Monache et al., 2013). 

• Lorenz (1969): analogues refer to “two states of the atmosphere which resemble each other rather closely” and “Each 
state may then be looked upon as equivalent to the other state plus a reasonably small ‘error’.” 

• Are used in meteorology, analogs primarily for pre- and post- processing of NWP forecasts (Hamill and Whitaker, 
2006). 

Delle Monache et al., 2013

Hybrid analogs – neural networks (e.g. CapsNet)

Ft = forecast to be corrected at a given time t and specific station location; 
At = analog forecast at time t’ before Ft is issued and at the same location. 
Nv, wi are the number of predictors and their weights, respectively; 
σfi i= standard deviation of the time series of past forecasts of a given variable at the same 
location 
t~ = an integer equal to half the width of the time window over which the metric is computed.
Fi,t+j and Ai,t+j = values of the prediction and the analog in the time window for a given 
variable. 
This metric describes the quality of the analog chosen and is based upon the similarity of the 
current forecast window to the past forecast time windows available in the historical dataset. 
E.g., for a three-hour forecast the window would consist of three points, t-3hr, t, and t+3hr. 



Post-processing – „classical“ methods

Analog-based methods – „data-driven“ AnEn with spatial search
field (satellite/radar/analysis field)

• Given a, e.g., satellite image of the current state of the atmosphere 
(the observation or truth),  search in a historical database N images that 
resemble the observation (the analogs)

• analogs are found running a k-nearest neighbors algorithm on compressed 
images (into four features)

• for a lead time l, we look at what happened l hours after the analogs (in the 
past), these are the successors.

• analogs and the successors images are translated to optimally match the truth
• successors are then aggregated to produce a forecast. 
• operator implemented here is the local linear aggregation operator. We fit a 

linear regression between the analogs and the successors, and use the resulting 
coefficients to propagate the observation and get a mean forecast and a 
variance

• The hypothesis behind the local linear operator is that the probability 
distribution function of the truth is gaussian. One can however use directly the 
successors as an ensemble of forecasts to estimate a different PDF.

Example application solar energy

Gfähler, Schicker 2022

Ayet and Tandeo, 2018

Implemented in test version, currently adapted for operational purposes

Not shown:
- MOS
- BMA
- ECC / 

Schaake
Shuffle

- …



Post-processing – hybrid methods

EMOS – ensemble model output statistics on point and grid

Uses:
• numerical weather prediction data, determinisic/probabilisitc
• Observations of official weather obs site
• OR: gridded analysis fields
• Based on non-homogeneous gaussian regression
• Originally implemented in Fortran, rewritten in R and python

EMOS:

Messner, J.W., G.J. Mayr, and A. Zeileis, 2017: Nonhomogeneous Boosting for Predictor Selection in Ensemble Postprocessing. Mon. Wea. 
Rev., 145, 137–147, https://doi.org/10.1175/MWR-D-16-0088.1

Advantage: we get an uncertainty estimation on-the-fly with the statistical-based method

EMOS boost:

Boosting: rather machine learning than pure statistics



Post-processing – hybrid methods

Python:
https://github.com/slerch/ppnn/blob/master/nn_postprocessing/n
n_src/emos_network_theano.py

R package:
ensembleMOS: EMOS modeling in ensembleMOS: Ensemble Model 
Output Statistics (rdrr.io)

https://github.com/slerch/ppnn/blob/master/nn_postprocessing/nn_src/emos_network_theano.py
https://github.com/slerch/ppnn/blob/master/nn_postprocessing/nn_src/emos_network_theano.py
https://rdrr.io/cran/ensembleMOS/man/ensembleMOS.html


SAMOS – standardized anomalies based model output statistics

Post-processing – hybrid methods

+ Boosting



Post-processing – machine learning methods

ANN / CNN / ConvLSTM

• Different applications: 
• meteorological forecasting grid/point
• Downstream applications: renewables, agriculture, transportation, mobility, logistics, road maintanance…

• Different types of data
• Observations (standard WMO)
• Satellite
• Radar, lidar data
• NWP models with varying quality, domain, grid size,…
• IoT: private weather stations, GPRSS, microlink data, mobile devices

• Different types of AI methods
• Simpler: MLP, Random Forest, SVM
• Complex: CNN, ConvLSTM, Berstein Quantiles
• Rather novel: NODEs, Graph (C)NN, SDEs/differential equations, physics-aware/inspired, GANs,…



 Hourly forecasts for the next 48 hours ahead
 Uses a neural network in “ensemble mode” 

(deterministic forecast) but can also switch to random
forest forecast (future: good to have both)

 Subhourly added
 RF + LSTM component added
 Needed adjustments in pre-processing (scaling + 

transformation

Skills:
• Direct access to “online” SCADA data
• In-built QC
• Adjustable forecast intervals, neurons, layers, etc.
• Adjustable training length depending on data 

availability

Challenges:
• “our” obs data available every 10-minutes
• NWP data so far with a large delay
• Non-convection permitting models are easy to learn

of, don‘t need long time series of data – convection
permitting models not, need lots of data

• Changes in the NWP model – how to deal with them? 
After 3 – 4 years a model changes nearly completely

Post-processing – machine learning methods we use



Point forecast using complex neural network setup and multiple data sources (PhD project, AWAkE):

Semi-operational for solar 
and wind

Post-processing – machine learning methods we use
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100 m wind speed
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Post-processing – machine learning methods

Core being replaced by:
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Post-processing – machine learning methods



Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-k., and Woo, W.-c. (2015). “Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting”. In: Proceedings of the 28th International Conference on Neural Information Processing Systems -
Volume 1. NIPS’15. Montreal, Canada: MIT Press, pp. 802–810.

ConvLSTM based model with adapted weighted loss function for different categories of wind speed 

• Some sort of basic physics aware network
• Weighting of less frequent cases of wind speed

(„extremes“)
• Adapted metric function
• Data-driven using ERA5 as input

Post-processing – machine learning methods



Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-k., and Woo, W.-c. (2015). “Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting”. In: Proceedings of the 28th International Conference on Neural Information Processing Systems -
Volume 1. NIPS’15. Montreal, Canada: MIT Press, pp. 802–810.

ConvLSTM based model with adapted weighted loss function for different categories of wind speed 

• Some sort of basic physics aware network
• Weighting of less frequent cases of wind speed

(„extremes“)
• Adapted metric function
• Data-driven using ERA5 as input

Post-processing – machine learning methods



- growing renewable energy source, can yield very different output for each location of interest

- effective integration to power grid: need forecasts of the expected power curve (e.g.: serves for grid stability, 
energy trading, scheduling of maintenance / energy transfer, ...) 

- various data sources available: power generated, met. site observation, satellite, numeric prediction (NWP)

- strong seasonal and diurnal variation in the data  want these variations in the nowcasts

 investigate machine learning/ML such as Artificial Neural Nets, Random Forest as efficient forecast tool

https://commons.wikimedia.org/wi
ki/File:Solar_PV_Austrian_Alps.jpg

Post-processing – machine learning methods setup for a case study



Data for CASE STUDY 2021

I N P U T :
 AROME:

forecasts in various p/z levels of solar radiation related
parameters (e.g.: short-wave radiation, cloud cover, …)

 CAMS – site interpolated radiation timeseries: 
radiation related parameters

 Observation site: 
observed solarpower

 TAWES/INCA – closest observation/analysis at surface level: 
global radiation, temperature, wind, humidity

+ computed climatology

We optimize site specific models and select data for each site from:

O U T P U T : solar power forecasts
in 15 min. resolution
+6 hours, hourly runs

Check missing, normalize, etc.

CASESTUDY
Training: 
 2015-2020 (incl. artificial) 
 2020 (real only)
Testing: 
 2021

3 Austrian sites selected



Post-processing Methodology: update a Background Model(s) by ML

Alternative:

Random Forest



[pvlib-expected] 
pv: 

2015-2020

30.03.2022
Folie 28

Issue: Short Observation Time-series of Power Plants

 generation of artificial training data, as more is needed for complex models (LSTM etc.)

pvlib
RF

TAWES

CAMS

pv OBS: 2020

[RF-expected] 
pv: 

2015-2019

artificial pv: 
2015-2020

... further transforming ...

robust
very fast

https://pypi.org/project/pvlib/

close observations

satellite-derived
point interpolation



Data: Obtaining Artificial Time-series

... deviate in scale for our specific site

1st opti. approach: 
transform by 
percentiles of PV-OBS

Long time series obtained: ghi, pvlib

RF+pvlib good but 
often seems to  
underestimate real 
PV

predict :=RF output based on CAMS-
radiation + TAWES observation + pvlib



30.03.2022
Folie 30

Selection and Transformation of Inputs

1. input feature X selection: simple methods such as RF weights, Target Y: solar power

2. replace / remove missing values, check quality

3. 0-1 normalization, using (here hourly) climatological standards

4. for longer vectors / sequences: intervalization by lead time steps

Basic climatological transformation from normalized X

Δ 𝑥𝑖 𝑡 ∶=
1 + 𝑛𝑜𝑟𝑚 𝑥𝑖 𝑂𝐵𝑆 𝑡 − 𝑛𝑜𝑟𝑚 𝑥𝑖 𝐶𝐿𝐼𝑀 ℎ𝑜𝑢𝑟 𝑡

2
𝑝𝑣 = denorm(2Δ 𝑝𝑣 − 1 + 𝑛𝑜𝑟𝑚 𝑝𝑣𝑐𝑙𝑖𝑚 )

𝑖 = 𝑝𝑣, 𝑟𝑎𝑑, 𝑓𝑓, 𝑢, 𝑣, 𝑇, 𝐶𝐶, 𝑇𝑂𝐴,… 𝑡 = 1,2, . . . , 24



Case Study Results – Sample Forecasts



Post-processing – machine learning methods

Graph networks – for wind/solar energy prediction

https://www.esann.org/sites/default/files/proceedings/2021/ES2021-25.pdf

Something similar being
implemented right now

https://ieeexplore.ieee.org/ielaam/5165391/9043622/8663347-aam.pdf

https://www.esann.org/sites/default/files/proceedings/2021/ES2021-25.pdf
https://ieeexplore.ieee.org/ielaam/5165391/9043622/8663347-aam.pdf


Post-processing – federated learning

Application fields for federated learning
• wind / solar energy: given the data policies of providers, TSOs, traders, etc.  distributed / network

federated learning would definetively help improving forecasts

• Meteorology: forecasts for obs sites/sites using not only
e.g. Austrian data but combine European observation
network or even PWS sites (after quality control)

• Mobility: combine different sources, even car
measurements

• Agriculture
• …

1 x 1 km resolution grid 
(700 x 400 points)Cluster

automatisch



Idea: use machine learning methods and/or statistics to “interpolate” in-situ observations of wind speed to a specified grid

Results: 100 m  and 1 km analysis fields of wind speed using a different methodology. Add on: depending on used background fields (DEM etc.) resolution could be changed to higher/lower.

 Can we use Graphs here? Would the work better? Can federated learning improve here

Post-processing – machine learning methods replacing gridded observations



Questions?

Comments?

Recommendations?


