

Cost-Efficient Federated Learning over Wireless Networks: A Proactive Stop Policy

SPS Seasonal PhD School, Aalto University

Carlo Fischione

Division of Network and Systems Engineering KTH Royal Institute of Technology, Stockholm, Sweden

Email: carlofi@kth.se

March 2022

State of the Art

- ▶ System Model and Problem Formulation
- ▶ Solution for Convex Loss Functions
- ► Solution for Non-convex Loss Functions
- ► Numerical Results
- ► Conclusion

Limitation of existing communication-efficient ML over networks

- \times Not considering the cost of running each iteration of an iterative ML over networks even while applying the well-known communication-efficient methods as:
 - Top-q sparsification [1]
 - Lazily aggregated gradient quantization (LAQ) [2]
- Adapt to the underlying communication protocols
- ▶ What we address is called "ML over networks" [3]
 - Distributed optimization for ML over a wireless communication network
 - The computations and communications must be efficient

^[1] Sattler et al. Robust and communication-efficient federated learning from non-iid data. IEEE Transactions on Neural Networks and Learning Systems 2019.

^[2] Sun et al. Lazily aggregated quantized gradient innovation for communication-efficient federated learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.

^[3] Mahmoudi et.al Cost-efficient Distributed Optimization In Machine Learning Over Wireless Networks. IEEE ICC 2020.

Overview of Federated Learning (FL)

Federated learning network setup [4], [5]:

Figure 3

- ▶ Star network: one master node and *M* workers
- Every worker j = 1, 2, ..., M has its own dataset with N_j samples
- Data sample in each worker j is x_{ij}, y_{ij}
- ▶ Workers aim to collaboratively solve the optimization problem (1)

$$\boldsymbol{w}^{\star} \in \min_{\boldsymbol{w} \in \mathbb{R}^{d}} f(\boldsymbol{w}) = \sum_{j \in [M]} \frac{1}{\sum_{j \in [M]} N_{j}} \sum_{i \in [N_{j}]} f(\boldsymbol{w}; \boldsymbol{x}_{ij}, y_{ij})$$
(1)

^[4] Konečn et al. Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492, 2016.

^[5] Chen et al. A Joint Learning and Communications Framework for Federated Learning Over Wireless Networks. IEEE Transactions on Wireless Communications, 2021.

FL: Iterative Solution

To solve (1), the iterative procedure '

1. Every worker $i \in [M]$ updates its

at each iteration $k = 1, \ldots, K$ is

local parameter \boldsymbol{w}_{k+1}^{J} as

$$\boldsymbol{w}^{\star} \in \min_{\boldsymbol{w} \in \mathbb{R}^{d}} f(\boldsymbol{w}) = \sum_{j \in [M]} \frac{1}{\sum_{j \in [M]} N_{j}} \sum_{i \in [N_{j}]} f(\boldsymbol{w}; \boldsymbol{x}_{ij}, y_{ij}), \quad (1)$$

Figure 4

$$\boldsymbol{w}_{k+1}^{j} = \boldsymbol{w}_{k} - \frac{\alpha_{k}}{N_{j}} \sum_{i \in [N_{j}]} \nabla_{w} f(\boldsymbol{w}_{k}; \boldsymbol{x}_{ij}, y_{ij})$$
(2)

- 2. All workers transmit their local parameter \boldsymbol{w}_{k+1}^{j} to the master node
- 3. Master node computes the global parameter \boldsymbol{w}_{k+1} by taking a weighted sum over all local parameters

$$\boldsymbol{w}_{k+1} = \sum_{j \in [M]} \frac{N_j}{\sum_{j \in [M]} N_j} \boldsymbol{w}_{k+1}^j$$
(3)

Federated Averaging (FedAvg)

Iterative procedure

- To solve (1), the procedure ' at each global iteration $k = 1, \ldots, K$ is
 - 1. Every worker $j \in [M]$ updates its local parameter \boldsymbol{w}_{k}^{j} after $l = 1, ..., k_{l}$ local iterations (define $\boldsymbol{w}_{k+1}^{j,0} := \boldsymbol{w}_{k}$, and $\boldsymbol{w}_{k+1}^{j} := \boldsymbol{w}_{k+1}^{j,k_{l}}$) Figure 4

$$\boldsymbol{w}^{*} \in \min_{\boldsymbol{w} \in \mathbb{R}^{d}} f(\boldsymbol{w}) = \sum_{j \in [M]} \frac{1}{\sum_{j \in [M]} N_{j}} \sum_{i \in [N_{j}]} f(\boldsymbol{w}; \boldsymbol{x}_{ij}, y_{ij}), \quad (1)$$

$$\boldsymbol{w}_{k+1}^{j,l} = \boldsymbol{w}_{k}^{j,l-1} - \frac{\alpha_{k}}{N_{j}} \sum_{i \in [N_{j}]} \nabla_{\boldsymbol{w}} f(\boldsymbol{w}_{k}^{j,l-1}; \boldsymbol{x}_{ij}, y_{ij})$$
(4)

- 2. All workers transmit their local parameter \boldsymbol{w}_{k+1}^{j} to the master node
- 3. Master node computes the global parameter \boldsymbol{w}_{k+1} by taking a weighted sum over all local parameters

$$\boldsymbol{w}_{k+1} = \sum_{j \in [M]} \frac{N_j}{\sum_{j \in [M]} N_j} \boldsymbol{w}_{k+1}^j$$
(5)
$$4/31$$

- ► State of the Art
- ▶ System Model and Problem Formulation
- ▶ Solution for Convex Loss Objective Functions
- ▶ Solution for Non-convex Loss Functions
- ► Numerical Results
- ► Conclusion

K: the stopping step of the FL iterations

$$K := \text{the first value of } k \mid ||f(\boldsymbol{w}_k) - f(\boldsymbol{w}^*)|| < \epsilon$$
(6)

 $\epsilon > 0$: the threshold at which we decide to stop the distributed FL algorithm c_k : the cost of iteration k

 $\sum_{k=1}^{K} c_k :=$ total cost of running the iterations (iteration-cost function)

Problem Formulation

- Let us consider as the general cost a multi-objective function of the iteration-cost $\sum_{k=1}^{K} c_k$ and the loss function $f(\boldsymbol{w}_K)$
- Our problem consists in finding the stopping iteration that minimizes the cost of solving problem (1)

$$\underset{\mathcal{K}}{\text{minimize}} \left(\beta \sum_{k=1}^{\mathcal{K}} c_k + (1-\beta) f(\boldsymbol{w}_{\mathcal{K}}) \right)$$
(7a)

s.t.
$$\boldsymbol{w}_{k+1}^{j,l} = \boldsymbol{w}_{k}^{j,l-1} - \frac{\alpha_{k}}{N_{j}} \sum_{i \in [N_{j}]} \nabla_{w} f(\boldsymbol{w}_{k}^{j,l-1}; \boldsymbol{x}_{ij}, y_{ij})$$
 (7b)

$$\boldsymbol{w}_{k+1} = \sum_{j \in [M]} \frac{N_j}{\sum_{j \in [M]} N_j} \boldsymbol{w}_{k+1}^j$$
(7c)

• $\beta \in (0, 1)$: Scalarization factor

To solve problem (7), we need the future information of $(f(w_k), c_k)_{k=1,...,K}$ Non-Causal Problem!

• Define
$$G(K) := \beta \sum_{k=1}^{K} c_k + (1 - \beta) f(\boldsymbol{w}_K)$$
,

$$k^* \in \underset{K}{\operatorname{arg\,min}} G(K)$$
 (8a)

s.t.
$$\boldsymbol{w}_{k+1}^{j,l} = \boldsymbol{w}_{k}^{j,l-1} - \frac{\alpha_{k}}{N_{j}} \sum_{i \in [N_{j}]} \nabla_{w} f(\boldsymbol{w}_{k}^{j,l-1}; \boldsymbol{x}_{ij}, y_{ij}) \quad \forall k$$
 (8b)
 $\boldsymbol{w}_{k+1} = \sum_{j \in [M]} \frac{N_{j}}{\sum_{j \in [M]} N_{j}} \boldsymbol{w}_{k+1}^{j} \quad \forall k$ (8c)

• $G(k^*)$: the optimum of (7)

The question is now how to solve optimization problem (8) in a causal way!

Figure 5

- The algorithm is applicable in real world: solves problem (8) without future information
- We prove that G(K) is discrete-convex
- ► G(K) allows to find the unique minimum (see next slide)

- ► State of the Art
- ▶ System Model and Problem Formulation
- Solution for Convex Loss Functions
- ► Solution for Non-convex Loss Functions
- ► Numerical Results
- ► Conclusion

Solution for Problem (8) for Convex Loss Functions

Causal Setting

The FLCau Algorithm finds the optimal or near to the optimal solution

Proposition 1

Let $f(\boldsymbol{w}_k)$ be convex. Let k^* be the solution to problem (8). Then, the FLCau solution k_c is such that

- k^{*} ≤ k_c ≤ k^{*} + 1
 f(w_{k_c}) ≤ f(w_{k^{*}})
 G(k_c) ≥ G(k^{*})

- ► State of the Art
- ▶ System Model and Problem Formulation
- ▶ Solution for Convex Loss Functions
- Solution for Non-convex Loss Functions
- ► Numerical Results
- ► Conclusion

Cost-Efficient FL for Non-Convex Loss Functions Challenges

- Consider non-convex loss function f(w) like Neural Networks (NNs) prediction loss
- Issue: the non-convexity leads to early stopping of FLCau
- Solution approach:
 - Define decreasing upper bound $F_u(w)$ and lower bound $F_l(w)$ functions for $f(w_k)$
 - Form upper and lower bounds on G(K)
 - Find an interval of $k_c \in [k_c^u, k_c^l]$
 - The bounds do not change the training process and iteration-cost c_k

▶ Define multi-objective upper bound $G_u(K)$ and lower bound $G_l(K)$ functions

$$G_{u}(K) := \beta \sum_{k=1}^{K} c_{k} + (1-\beta)F_{u}(\boldsymbol{w}_{K}), \qquad (9a)$$

$$G_{l}(K) := \beta \sum_{k=1} c_{k} + (1-\beta)F_{l}(\boldsymbol{w}_{K})$$
(9b)

• Calculating k_u^* and k_l^*

$$k_u^{\star} \in \underset{K \in \mathbb{N}}{\operatorname{arg\,min}} \ G_u(K) , \qquad (10a)$$

$$k_l^{\star} \in \underset{K \in \mathbb{N}}{\operatorname{arg\,min}} G_l(K) \tag{10b}$$

According to Proposition 2 about causal stopping iteration

$$k_{u}^{\star} \leq k_{c}^{u} \leq k_{u}^{\star} + 1, \qquad (11a)$$

$$k_{l}^{\star} \leq k_{c}^{l} \leq k_{l}^{\star} + 1 \qquad (11b)$$

11/32

- We build decreasing sequences of $(F_u(\boldsymbol{w}_k))_k$ and $(F_l(\boldsymbol{w}_k))_k$ such that $F_l(\boldsymbol{w}_k) \leq f(\boldsymbol{w}_k) \leq F_u(\boldsymbol{w}_k)$
- ▶ Master node updates $F_u(\boldsymbol{w}_i)_{i=1:k}$ and $F_l(\boldsymbol{w}_i)_{i=1:k}$ at each iteration k
- Define $F_A : \mathbb{N} \mapsto \mathbb{R}$ as the approximation function

$$F_{A}(t; f(\boldsymbol{w}_{k1}), f(\boldsymbol{w}_{k2})) = gt + B, \ t \in [k_{1}, k_{2}]$$

$$g = \frac{f(\boldsymbol{w}_{k1}) - f(\boldsymbol{w}_{k2})}{k_{1} - k_{2}}, \ B = f(\boldsymbol{w}_{k1}) - gk_{1}$$
(12)

Bounds Updates

$$F_A(t; f(\boldsymbol{w}_{k1}), f(\boldsymbol{w}_{k_2})) = gt + B, \quad t \in [k_1, k_2], \quad (12)$$

$$g = \frac{f(w_{k1}) - f(w_{k_2})}{k_1 - k_2}, \quad B = f(w_{k1}) - gk_1$$

For
$$k \leq 2$$
, set $F_u(\boldsymbol{w}_k) = F_l(\boldsymbol{w}_k) = f(\boldsymbol{w}_k)$

• Define
$$\delta_k^u = F_u(\boldsymbol{w}_k) - F_u(\boldsymbol{w}_{k-1})$$
, and $\delta_k^l = F_l(\boldsymbol{w}_k) - F_l(\boldsymbol{w}_{k-1})$

► At each iteration k:

•
$$k_{\max}^{u} = \max \{ t | F_{u}(\boldsymbol{w}_{t}) > f(\boldsymbol{w}_{k}), t < k \}$$

• $k_{\max}^{l} = \max \{ t | F_{l}(\boldsymbol{w}_{t}) = f(\boldsymbol{w}_{t}), t < k \}$

$$F_{u}(\boldsymbol{w}_{k}) = \begin{cases} f(\boldsymbol{w}_{k}), & f(\boldsymbol{w}_{k-1}) < f(\boldsymbol{w}_{k}) < F_{u}(\boldsymbol{w}_{k-1}) \\ F_{u}(\boldsymbol{w}_{k-1}) + \delta_{k}^{l}, & f(\boldsymbol{w}_{k}) < f(\boldsymbol{w}_{k-1}) \leq F_{l}(\boldsymbol{w}_{k_{\max}^{l}}) \\ F_{A}(k), & F_{u}(\boldsymbol{w}_{k-1}) < f(\boldsymbol{w}_{k}) < F_{u}(\boldsymbol{w}_{k_{\max}^{u}}) \end{cases}$$
(13)
$$F_{l}(\boldsymbol{w}_{k}) = \begin{cases} F_{l}(\boldsymbol{w}_{k-1}) + \delta_{k}^{u}, & f(\boldsymbol{w}_{k-1}) < f(\boldsymbol{w}_{k}) < F_{u}(\boldsymbol{w}_{k-1}) \\ F_{A}(k), & f(\boldsymbol{w}_{k}) < f(\boldsymbol{w}_{k-1}) \leq F_{l}(\boldsymbol{w}_{k_{\max}^{l}}) \\ F_{l}(\boldsymbol{w}_{k-1}) + \delta_{k}^{u}, & F_{u}(\boldsymbol{w}_{k-1}) < f(\boldsymbol{w}_{k}) < F_{u}(\boldsymbol{w}_{k_{\max}^{u}}) \end{cases}$$
(14)

Solution for Problem (8) for Non-convex Losses

Causal Setting

The FLCau Algorithm finds the optimal or near to the optimal solution

Proposition 2

Let $f(\mathbf{w}_k)$ be non-convex. Let k^* be the solution to problem (8). Then, the FLCau solution k_c is such that min $\{k_c^l, k_c^u\} \leq k_c \leq \max\{k_c^l, k_c^u\}$

- k^{*} ≤ k_c ≤ k^{*} + Δ
 f(w_{k_c}) ≤ f(w_{k^{*}})
 G(k_c) ≥ G(k^{*})

State of the Art

- ▶ System Model and Problem Formulation
- Solution for Convex Loss Functions
- ▶ Solution for Non-convex Loss Functions

Numerical Results

- ▶ Slotted-ALHOA and CSMA/CA
- ▶ Top-*q* Sparsification and Lazily Aggregated Quantized Gradient (LAQ) method

► Conclusion

- Star network with one master node
- ▶ Perform FL over an image classification task using the MNIST dataset
- ► *M*: Number of workers
- Logistic regression loss function as

$$f(\boldsymbol{w}) = \frac{1}{M} \sum_{j \in [M]} \frac{1}{N_j} \sum_{i \in [N_j]} \log \left(1 + e^{-\boldsymbol{w}^T \boldsymbol{x}_{ij} y_{ij}} \right)$$
(15)

- Number of bits as the iteration-cost
- ▶ *d* = 784 in MNIST dataset
- Consider $|\mathcal{M}_k| = M$

- State of the Art
- ▶ System Model and Problem Formulation
- Solution for Convex Loss Functions
- ▶ Solution for Non-convex Loss Functions
- Numerical Results
 - Slotted-ALHOA and CSMA/CA
 - ▶ Top-q Sparsification and Lazily Aggregated Quantized Gradient (LAQ) method
- ► Conclusion

FLCau Application

Latency components of running every iteration of FL

Figure 4: FL problem over wireless networks.

We model the cost $c_k = \sum_{i=1}^4 \ell_{i,k}$ as the latency for wireless communication and computation, defined as follows:

- $\ell_{1,k}$: latency in broadcasting parameters by master node
- $\ell_{2,k}$: latency in computing \boldsymbol{w}_k^j for every worker node j
- $\ell_{3,k}$: latency in sending \boldsymbol{w}_k^j to master node in a multiple access channel
- $\ell_{4,k}$: latency in updating parameters at the master node

Iteration Cost

Computation Latency

Computation latency: Computation latency in master node + Local computation latency

- ▶ Computation latency in master node $(\ell_{4,k}) \ll$ Local computation latency $(\ell_{2,k})$
- Parallel computations in workers
- All workers wait for the slowest worker before transmission
- The computation latency of each worker $j \in [M]$ obtained as $\ell_{2,k}^j = a_k^j |D_j| / \nu_k^j$ [6]
 - a_k^j is the number of processing cycles to execute one sample of data (cycles/sample)
 - ν_k^j is the central processing unit (cycles/sec)
- The computation latency at each iteration k is upper-bounded by

$$\ell_{2,k} \le |D| \max_{j \in [M]} \left\{ \frac{a_k^j}{\nu_k^j} \right\}$$
(16)

where $|D| = \sum_{j \in [M} |D_j|$.

^[6] Nguyen et.al Efficient Federated Learning Algorithm for Resource Allocation in Wireless IoT Networks. IEEE Internet of Things Journal 2020.

Figure 4: FL problem over wireless networks.

- Multiple Access protocols like Slotted-ALOHA and CSMA/CA
- ► Local FL parameters are head-of-line packets at each iteration *k*.
- \triangleright p_x and p_r are transmission probability, and background packet arrival probability at each time slot

Transitions Probabilities in State Graph

Figure 5: Overall view of the state graph with M + 1 states.

- $p_{i,i}$: the probability that no new node transmits. Possible scenarios:
 - Pr{No successful transmission in the system},
 - Pr{Idle time slot},
 - $Pr{Just one of the node j \in {1, 2, ..., i} transmits a background packet successfully}.$
- $p_{i,i+1}$: the probability of a new node transmits successfully.

Upper Bound on Communication Cost

Figure 5: Overall view of the state graph with M + 1 states.

- ► t_s: Duration of one time slot (sec)
- \hat{p} : Probability of an idle time slot
- ▶ $\mathbb{E} \{\ell_{3,k}\}$: Average communication latency in iteration k

$$\mathbb{E}\left\{\ell_{3,k}\right\} \leq t_{s} \left(\sum_{i=0}^{M-1} \left\{p_{i,i+1} + \frac{p_{i,i}}{(1-p_{i,i})^{2}}\right\}\right),$$
(17)
$$p_{i,i} = p_{r} p_{x} \sum_{j=1}^{i-1} \frac{(i-1)!}{j!(i-1-j)!} \left\{p_{r}^{j}(1-p_{x})^{j}(1-p_{r})^{i-1-j}\right\},$$
$$p_{i,i+1} = (M-i) p_{x}(1-p_{x})^{M-i-1}$$
$$\sum_{j=1}^{i} p_{r}^{j}(1-p_{x})^{j}(1-p_{r})^{i-j}.$$
$$20/31$$

- Star networks with one master node
- Slotted-ALOHA and CSMA/CA as the uplink channel
- Perform FedAvg over MNIST dataset
- Neural Networks (NNs) prediction loss functions
- Latency as the iteration-cost
- p_x : Transmission probability at each time slot
- *p_r*: Packet arrival probability in each time slot
- ► *M*: Number of workers

Numerical Results: Slotted-ALOHA and CSMA/CA

NNs prediction loss functions

- Bounds correctly track true loss function (a)
- ▶ $k_c^u = 39$, $k_c = 43$, $k_c^l = 48$ shows that the difference between optimal and suboptimal number of iterations is small (b)
- ▶ Loss function and its bounds after one realization (c) and 100 realizations (a)

Numerical Results: Slotted-ALOHA and CSMA/CA

Stopping Iteration

Numerical Results: Slotted-ALOHA and CSMA/CA

Iteration-cost

Figure 8

- The bound on iteration cost c_k in MAC protocols works on the simulation results
- ▶ Transmission probability p_x has the least effect on C(K), (a)
- Packet arrival probability has the most effect, (b)
- > Number of workers M also affects the iteration cost, but the effect is small, (c)

- State of the Art
- ▶ System Model and Problem Formulation
- Solution for Convex Loss Functions
- ▶ Solution for Non-convex Loss Functions
- ► Numerical Results
 - ▶ Slotted-ALHOA and CSMA/CA
 - ▶ Top-*q* Sparsification and Lazily Aggregated Quantized Gradient (LAQ) method
- ► Conclusion

Communicate only a fraction (q) of largest elements with full precision [1]

- Other elements are not communicated
- New dimension $d_s := \lceil q * d
 ceil$, $q \in (0,1]$

$$\blacktriangleright \nabla_k^j := \sum_{i \in [N_j]} \nabla_w f(\boldsymbol{w}_k; \boldsymbol{x}_{ij}, y_{ij}), \nabla_k^j \in \mathbb{R}^d$$

•
$$\tilde{
abla}_k^j := \mathsf{Reduced} \ \mathsf{vector} \ \mathsf{of} \
abla_k^j, \ \tilde{
abla}_k^j \in \mathbb{R}^{d_s}$$

- Estimated global update $\tilde{\boldsymbol{w}}_k := \tilde{\boldsymbol{w}}_{k-1} \sum_{j \in [M]} \tilde{\nabla}^j_k / M$
- ► *c_k* := number of communication bits
- Calculate $\tilde{G}(k)$ with estimated $\tilde{\boldsymbol{w}}_k$, and $f(\tilde{\boldsymbol{w}}_k)$
- Robustness to non-i.i.d. data is due to mainly two reasons:
 - · The frequent communication of weight updates prevents the weights from diverging too far
 - The noise in the stochastic gradients is not amplified by quantization

^[1] Sattler et al. Robust and communication-efficient federated learning from non-iid data. IEEE Transactions on Neural Networks and Learning Systems 2019.

- $d_s = \lceil q * d \rceil$, $q \in (0, 1]$
- Each worker j transmits the largest d_s components of its local vector
- Element-wise quantization of each reduced vector
 - $b_t \leq 32$: number of bits of each element when applying top-q method
- ▶ The total number of transmitted bits at each iteration *k*:

$$c_k = Md_s b_t \le 32Md_s \tag{18}$$

Lazily Aggregated Quantized Gradient (LAQ) Methodology

- Reduces the number of worker-to-BS uplink communications [2]
- ▶ $\boldsymbol{u}^{j}(\boldsymbol{w}_{k})$: the quantized gradient per worker $j \in \mathcal{M}_{k}$, $|\mathcal{M}_{k}| \leq M$
- $\blacktriangleright \quad \hat{\boldsymbol{w}}_{k}^{j} = \begin{cases} \boldsymbol{w}_{k}, & j \in \mathcal{M}_{k} \\ \hat{\boldsymbol{w}}_{k-1}^{j}, & j \notin \mathcal{M}_{k} \end{cases}$
- $\triangleright \ R_k^j := \|\nabla_{\boldsymbol{w}} f(\boldsymbol{w}_k^j) \boldsymbol{u}^j(\hat{\boldsymbol{w}}_{k-1}^j)\|_{\infty}$
- ▶ Quantization granularity is defined as $\tau := 1/(2^b 1)$
 - b: number of communication bits

$$\delta \boldsymbol{u}_{k}^{j} := \boldsymbol{u}^{j}(\boldsymbol{w}_{k}) - \boldsymbol{u}^{j}(\hat{\boldsymbol{w}}_{k-1}^{j}) = 2\tau R_{k}^{j} \boldsymbol{u}^{j}(\boldsymbol{w}_{k}) - R_{k}^{j} \mathbf{1}$$

• $\mathbf{1} = [1, \dots, 1]^{T}$

- Global update at each iteration in BS: $\boldsymbol{w}_{k+1} = \boldsymbol{w}_k \alpha_k \boldsymbol{\nabla}_k$
 - $\nabla_k := \nabla_{k-1} + \sum_{j \in \mathcal{M}_k} \delta \boldsymbol{u}_k^j$
 - Transmitted by 32 + bd bits instead of 32d

^[2] Sun et al. Lazily aggregated quantized gradient innovation for communication-efficient federated learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.

FLCau and LAQ

Characterizing Iteration-Cost

Figure 10

 \blacktriangleright Element-wise quantization with b bits and vector dimension d

$$c_k = |\mathcal{M}_k|(32 + bd) \le M(32 + bd) \tag{19}_{28/3}$$

Comparison Between FLCau and Traditional Methods

Table 1: M = 50, $|M_k| = M$, $b_t = 32$

	Stop itoration	Total cost (×10 ⁶	Test accu-
Method		bits)	racy (%)
FLCau LAQ, $b = 2$	57	4.56	94.2
FLCau LAQ, $b = 10$	43	16.92	87.8
FLCau Top- q , $q = 0.1$	49	6.19	92.4
FLCau Top- q , $q = 0.6$	43	32.4	80.9
FLCau	56	70.24	96.4
FL LAQ, $b = 2$	200	16	98
FL LAQ, $b = 10$	200	78.7	98.7
FL Top- q , $q = 0.1$	200	25	98.9
FL Top- q , $q = 0.6$	200	150.72	97.5
FL	200	250.88	99.02

Significant reduction in total cost with FLCau

- Trade off between test accuracy and total cost
- More than 60% improvement in cost reduction
- Test accuracy reduction of 1-15 %

Numerical Results

FLCau applied on top of LAQ and top-q

- Numerical results with FLCau, M = 50
- Test accuracy while applying FLCau:
 - Top-q with q = 0.1 outperforms the case q = 0.6 by 13%
 - LAQ with b = 2 has the closest accuracy (94%) to the FLCau (96%)

- ► State of the Art
- ▶ System Model and Problem Formulation
- Convex Loss Functions
- ▶ Non-Convex Loss Functions
- ► Numerical Results
- Conclusion

- We proposed an optimization of the communication-computation costs for solving an FL training problem
- We established a novel cost-efficient FL algorithm (FLCau) for both convex and non-convex stochastic loss functions.
- FLCau can be applied on top of existing cost-efficient methods, such as Top-q and LAQ
- Numerical results indicated that FLCau reduces the total cost by 60% while achieves a near-optimal test accuracy

Thanks for your attention.

Questions?