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State of the Art

Figure 2

Limitation of existing communication-efficient
ML over networks

× Not considering the cost of running each iteration of an iterative ML over networks
even while applying the well-known communication-efficient methods as:

• Top-q sparsification [1]
• Lazily aggregated gradient quantization (LAQ) [2]

▶ Adapt to the underlying communication protocols

▶ What we address is called “ML over networks” [3]

• Distributed optimization for ML over a wireless communication network
• The computations and communications must be efficient

[1] Sattler et al. Robust and communication-efficient federated learning from non-iid data. IEEE Transactions on Neural Networks and
Learning Systems 2019.

[2] Sun et al. Lazily aggregated quantized gradient innovation for communication-efficient federated learning. IEEE Transactions on Pattern
Analysis and Machine Intelligence 2020.

[3] Mahmoudi et.al Cost-efficient Distributed Optimization In Machine Learning Over Wireless Networks. IEEE ICC 2020. 1 / 31



Overview of Federated Learning (FL)

Figure 3

Federated learning network setup [4], [5]:

▶ Star network: one master node and M workers

▶ Every worker j = 1, 2, . . . ,M has its own dataset with Nj samples

▶ Data sample in each worker j is x ij , yij
▶ Workers aim to collaboratively solve the optimization problem (1)

w⋆ ∈ min
w∈Rd

f (w) =
∑
j∈[M]

1∑
j∈[M]Nj

∑
i∈[Nj ]

f (w ; x ij , yij) (1)

[4] Konečn et al. Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492, 2016.

[5] Chen et al. A Joint Learning and Communications Framework for Federated Learning Over Wireless Networks. IEEE Transactions on
Wireless Communications, 2021.
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FL: Iterative Solution w⋆ ∈ min
w∈Rd

f (w) =
∑
j∈[M]

1∑
j∈[M] Nj

∑
i∈[Nj ]

f (w ; x ij , yij ), (1)

Figure 4

To solve (1), the iterative procedure ´
at each iteration k = 1, . . . ,K is

1. Every worker j ∈ [M] updates its
local parameter w j

k+1 as

w j
k+1 = wk −

αk

Nj

∑
i∈[Nj ]

∇w f (wk ; x ij , yij) (2)

2. All workers transmit their local parameter w j
k+1 to the master node

3. Master node computes the global parameter wk+1 by taking a weighted sum over
all local parameters

wk+1 =
∑
j∈[M]

Nj∑
j∈[M]Nj

w j
k+1 (3)
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Federated Averaging (FedAvg)
Iterative procedure

w⋆ ∈ min
w∈Rd

f (w) =
∑
j∈[M]

1∑
j∈[M] Nj

∑
i∈[Nj ]

f (w ; x ij , yij ), (1)

Figure 4

To solve (1), the procedure ´
at each global iteration k = 1, . . . ,K is

1. Every worker j ∈ [M] updates
its local parameter w j

k after l = 1, . . . , kl local

iterations (define w j ,0
k+1 := wk , and w j

k+1 := w j ,kl
k+1)

w j ,l
k+1 = w j ,l−1

k − αk

Nj

∑
i∈[Nj ]

∇w f (w
j ,l−1
k ; x ij , yij) (4)

2. All workers transmit their local parameter w j
k+1 to the master node

3. Master node computes the global parameter wk+1 by taking a weighted sum over
all local parameters

wk+1 =
∑
j∈[M]

Nj∑
j∈[M]Nj

w j
k+1 (5)
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System Model

Figure 4

K : the stopping step of the FL iterations

K := the first value of k | ∥f (wk)− f (w∗)∥ < ϵ (6)

ϵ > 0: the threshold at which we decide to stop the distributed FL algorithm

ck : the cost of iteration k∑K
k=1 ck := total cost of running the iterations (iteration-cost function)
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Problem Formulation

▶ Let us consider as the general cost a multi-objective function of the iteration-cost∑K
k=1 ck and the loss function f (wK )

▶ Our problem consists in finding the stopping iteration that minimizes the cost of
solving problem (1)

minimize
K

(
β

K∑
k=1

ck + (1− β)f (wK )

)
(7a)

s.t. w j ,l
k+1 = w j ,l−1

k − αk

Nj

∑
i∈[Nj ]

∇w f (w
j ,l−1
k ; x ij , yij) (7b)

wk+1 =
∑
j∈[M]

Nj∑
j∈[M]Nj

w j
k+1 (7c)

• β ∈ (0, 1): Scalarization factor

To solve problem (7), we need the future information of (f (wk), ck)k=1,...,K

Non-Causal Problem!
6 / 31



Solution Approach

▶ Define G (K ) := β
∑K

k=1 ck + (1− β)f (wK ),

k∗ ∈ argmin
K

G (K ) (8a)

s.t. w j ,l
k+1 = w j ,l−1

k − αk

Nj

∑
i∈[Nj ]

∇w f (w
j ,l−1
k ; x ij , yij) ∀k (8b)

wk+1 =
∑
j∈[M]

Nj∑
j∈[M]Nj

w j
k+1 ∀k (8c)

▶ G (k∗): the optimum of (7)

The question is now how to solve optimization problem (8) in a causal way!
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FL Causal Setting (FLCau) Algorithm to Solve Problem (8)

Figure 5

▶ The algorithm is applicable in real world: solves problem (8) without future
information

▶ We prove that G (K ) is discrete-convex

▶ G (K ) allows to find the unique minimum (see next slide)
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Solution for Problem (8) for Convex Loss Functions

Causal Setting

▶ The FLCau Algorithm finds the optimal or near to the optimal solution

Proposition 1

Let f (wk) be convex. Let k⋆ be the solution to problem (8). Then, the
FLCau solution kc is such that

• k⋆ ≤ kc ≤ k⋆ + 1

• f (w kc ) ≤ f (w k⋆)

• G (kc) ≥ G (k⋆)
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Cost-Efficient FL for Non-Convex Loss Functions
Challenges

▶ Consider non-convex loss function f (w) like Neural Networks (NNs) prediction loss

▶ Issue: the non-convexity leads to early stopping of FLCau
▶ Solution approach:

• Define decreasing upper bound Fu(w) and lower bound Fl(w) functions for f (w k)
• Form upper and lower bounds on G (K )
• Find an interval of kc ∈ [ku

c , k
l
c ]

• The bounds do not change the training process and iteration-cost ck

10 / 31



Cost-Efficient FL for Non-Convex Objective Functions
Upper and Lower Bounds

▶ Define multi-objective upper bound Gu(K ) and lower bound Gl(K ) functions

Gu(K ) := β

K∑
k=1

ck + (1− β)Fu(wK ) , (9a)

Gl(K ) := β

K∑
k=1

ck + (1− β)Fl(wK ) (9b)

▶ Calculating k⋆u and k⋆l

k⋆u ∈ argmin
K∈N

Gu(K ) , (10a)

k⋆l ∈ argmin
K∈N

Gl(K ) (10b)

▶ According to Proposition 2 about causal stopping iteration

k⋆u ≤ kuc ≤ k⋆u + 1 , (11a)

k⋆l ≤ k lc ≤ k⋆l + 1 (11b)
11 / 31



How to Build the Bounds of Gu(K )
Algorithm

▶ We build decreasing sequences of (Fu(wk))k and (Fl(wk))k such that
Fl(wk) ≤ f (wk) ≤ Fu(wk)

▶ Master node updates Fu(w i )i=1:k and Fl(w i )i=1:k at each iteration k

▶ Define FA : N 7→ R as the approximation function

FA(t; f (wk1), f (wk2)) = gt + B, t ∈ [k1, k2] (12)

g =
f (wk1)− f (wk2)

k1 − k2
, B = f (wk1)− gk1

12 / 31



Bounds Updates

FA(t; f (wk1), f (wk2
)) = gt + B, t ∈ [k1, k2], (12)

g =
f (wk1) − f (wk2

)

k1 − k2
, B = f (wk1) − gk1

▶ For k ≤ 2, set Fu(wk) = Fl(wk) = f (wk)

▶ Define δuk = Fu(wk)− Fu(wk−1), and δlk = Fl(wk)− Fl(wk−1)
▶ At each iteration k :

• ku
max = max {t |Fu(w t) > f (w k), t < k}

• k l
max = max {t |Fl(w t) = f (w t), t < k}

Fu(wk) =


f (wk), f (wk−1) < f (wk) < Fu(wk−1)

Fu(wk−1) + δlk , f (wk) < f (wk−1) ≤ Fl(wk l
max

)

FA(k), Fu(wk−1) < f (wk) < Fu(wku
max

)

(13)

Fl(wk) =


Fl(wk−1) + δuk , f (wk−1) < f (wk) < Fu(wk−1)

FA(k), f (wk) < f (wk−1) ≤ Fl(wk l
max

)

Fl(wk−1) + δuk , Fu(wk−1) < f (wk) < Fu(wku
max

)

(14)
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Solution for Problem (8) for Non-convex Losses

Causal Setting

▶ The FLCau Algorithm finds the optimal or near to the optimal solution

Proposition 2

Let f (wk) be non-convex. Let k⋆ be the solution to problem (8). Then, the
FLCau solution kc is such that min

{
k lc , k

u
c

}
≤ kc ≤ max

{
k lc , k

u
c

}
• k⋆ ≤ kc ≤ k⋆ +∆

• f (w kc ) ≤ f (w k⋆)

• G (kc) ≥ G (k⋆)
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Numerical Results
Parameters

▶ Star network with one master node

▶ Perform FL over an image classification task using the MNIST dataset

▶ M: Number of workers

▶ Logistic regression loss function as

f (w) =
1

M

∑
j∈[M]

1

Nj

∑
i∈[Nj ]

log
(
1 + e−wTx ijyij

)
(15)

▶ Number of bits as the iteration-cost

▶ d = 784 in MNIST dataset

▶ Consider |Mk | = M

15 / 31
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FLCau Application
Latency components of running every iteration of FL

Figure 4: FL problem over wireless networks.

We model the cost ck =
∑4

i=1 ℓi ,k as the latency
for wireless communication and computation, defined as follows:

ℓ1,k : latency in broadcasting parameters by master node

ℓ2,k : latency in computing w j
k for every worker node j

ℓ3,k : latency in sending w j
k to master node in a multiple access channel

ℓ4,k : latency in updating parameters at the master node
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Iteration Cost
Computation Latency

Computation latency: Computation latency in master node + Local computation latency

▶ Computation latency in master node (ℓ4,k) ≪ Local computation latency(ℓ2,k)

▶ Parallel computations in workers

▶ All workers wait for the slowest worker before transmission
▶ The computation latency of each worker j ∈ [M] obtained as ℓj2,k = ajk |Dj |/ν jk [6]

• ajk is the number of processing cycles to execute one sample of data (cycles/sample)
• ν jk is the central processing unit (cycles/sec)

▶ The computation latency at each iteration k is upper-bounded by

ℓ2,k ≤ |D| max
j∈[M]

{
ajk

ν jk

}
(16)

where |D| =
∑

j∈[M |Dj |.

[6] Nguyen et.al Efficient Federated Learning Algorithm for Resource Allocation in Wireless IoT Networks. IEEE Internet of Things Journal
2020.
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Iteration Cost
Communication Latency

Figure 4: FL problem over wireless networks.

▶ Multiple Access protocols like Slotted-ALOHA and CSMA/CA

▶ Local FL parameters are head-of-line packets at each iteration k.

▶ px and pr are transmission probability, and background packet arrival probability at each
time slot
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Transitions Probabilities in State Graph

Figure 5: Overall view of the state graph with M + 1 states.

▶ pi ,i : the probability that no new node transmits. Possible scenarios:
• Pr{No successful transmission in the system},
• Pr{Idle time slot},
• Pr{Just one of the node j ∈ {1, 2, . . . , i} transmits a background packet successfully}.

▶ pi ,i+1: the probability of a new node transmits successfully.

19 / 31



Upper Bound on Communication Cost

Figure 5: Overall view of the state graph with M + 1 states.

▶ ts : Duration of one time slot (sec)

▶ p̂: Probability of an idle time slot

▶ E {ℓ3,k}: Average communication latency in iteration k

E {ℓ3,k} ≤ ts

(
M−1∑
i=0

{
pi ,i+1 +

pi ,i
(1− pi ,i )2

})
, (17)

pi ,i = prpx

i−1∑
j=1

(i − 1)!

j!(i − 1− j)!

{
pjr (1− px)

j(1− pr )
i−1−j

}
,

pi ,i+1 = (M − i) px(1− px)
M−i−1

i∑
j=1

pjr (1− px)
j(1− pr )

i−j .
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Numerical Results
Parameters

▶ Star networks with one master node

▶ Slotted-ALOHA and CSMA/CA as the uplink channel

▶ Perform FedAvg over MNIST dataset

▶ Neural Networks (NNs) prediction loss functions

▶ Latency as the iteration-cost

▶ px : Transmission probability at each time slot

▶ pr : Packet arrival probability in each time slot

▶ M: Number of workers
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Numerical Results: Slotted-ALOHA and CSMA/CA
NNs prediction loss functions

Figure 6

▶ Bounds correctly track true loss function (a)

▶ kuc = 39, kc = 43, k lc = 48 shows that the difference between optimal and
suboptimal number of iterations is small (b)

▶ Loss function and its bounds after one realization (c) and 100 realizations (a)
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Numerical Results: Slotted-ALOHA and CSMA/CA
Stopping Iteration

Figure 7
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Numerical Results: Slotted-ALOHA and CSMA/CA
Iteration-cost

Figure 8

▶ The bound on iteration cost ck in MAC protocols works on the simulation results

▶ Transmission probability px has the least effect on C (K ), (a)

▶ Packet arrival probability has the most effect, (b)

▶ Number of workers M also affects the iteration cost, but the effect is small, (c)
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Top-q Sparsification
Methodology

▶ Communicate only a fraction (q) of largest elements with full precision [1]
• Other elements are not communicated
• New dimension ds := ⌈q ∗ d⌉, q ∈ (0, 1]

▶ ∇j
k :=

∑
i∈[Nj ]

∇w f (wk ; x ij , yij),∇j
k ∈ Rd

▶ ∇̃j
k := Reduced vector of ∇j

k , ∇̃
j
k ∈ Rds

▶ Estimated global update w̃k := w̃k−1 −
∑

j∈[M] ∇̃
j
k/M

▶ ck := number of communication bits

▶ Calculate G̃ (k) with estimated w̃k , and f (w̃k)

▶ Robustness to non-i.i.d. data is due to mainly two reasons:
• The frequent communication of weight updates prevents the weights from diverging too far
• The noise in the stochastic gradients is not amplified by quantization

[1] Sattler et al. Robust and communication-efficient federated learning from non-iid data. IEEE Transactions on Neural Networks and
Learning Systems 2019.
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FLCau and Top-q Sparsification
Characterizing Iteration-Cost

Figure 9

▶ Dimension-reduction to ds ≤ d :
• ds = ⌈q ∗ d⌉, q ∈ (0, 1]
• Each worker j transmits the largest ds components of its local vector

▶ Element-wise quantization of each reduced vector
• bt ≤ 32: number of bits of each element when applying top-q method

▶ The total number of transmitted bits at each iteration k :

ck = Mdsbt ≤ 32Mds (18)
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Lazily Aggregated Quantized Gradient (LAQ)
Methodology

▶ Reduces the number of worker-to-BS uplink communications [2]

▶ u j(wk): the quantized gradient per worker j ∈ Mk , |Mk | ≤ M

▶ ŵ j
k =

{
wk , j ∈ Mk

ŵ j
k−1, j /∈ Mk

▶ R j
k := ∥∇w f (w j

k)− u j(ŵ j
k−1)∥∞

▶ Quantization granularity is defined as τ := 1/(2b − 1)
• b: number of communication bits

▶ δu j
k := u j(wk)− u j(ŵ j

k−1) = 2τR j
ku

j(wk)− R j
k1

• 1 = [1, . . . , 1]T

▶ Global update at each iteration in BS: wk+1 = wk − αk∇k

• ∇k := ∇k−1 +
∑

j∈Mk
δu j

k
• Transmitted by 32 + bd bits instead of 32d

[2] Sun et al. Lazily aggregated quantized gradient innovation for communication-efficient federated learning. IEEE Transactions on Pattern
Analysis and Machine Intelligence 2020.
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FLCau and LAQ
Characterizing Iteration-Cost

Figure 10

▶ Element-wise quantization with b bits and vector dimension d

ck = |Mk |(32 + bd) ≤ M(32 + bd) (19)
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Comparison Between FLCau and Traditional Methods
Table 1: M = 50, |Mk | = M, bt = 32

Method Stop iteration
Total cost (×106

bits)

Test accu-
racy (%)

FLCau LAQ, b = 2 57 4.56 94.2

FLCau LAQ, b = 10 43 16.92 87.8

FLCau Top-q, q = 0.1 49 6.19 92.4

FLCau Top-q, q = 0.6 43 32.4 80.9

FLCau 56 70.24 96.4

FL LAQ, b = 2 200 16 98

FL LAQ, b = 10 200 78.7 98.7

FL Top-q, q = 0.1 200 25 98.9

FL Top-q, q = 0.6 200 150.72 97.5

FL 200 250.88 99.02

▶ Significant reduction in total cost with FLCau
• Trade off between test accuracy and total cost
• More than 60% improvement in cost reduction
• Test accuracy reduction of 1-15 %
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Numerical Results
FLCau applied on top of LAQ and top-q

Figure 11

▶ Numerical results with FLCau, M = 50
▶ Test accuracy while applying FLCau:

• Top-q with q = 0.1 outperforms the case q = 0.6 by 13%
• LAQ with b = 2 has the closest accuracy (94%) to the FLCau (96%)
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Conclusion

▶ We proposed an optimization of the communication-computation costs for solving
an FL training problem

▶ We established a novel cost-efficient FL algorithm (FLCau) for both convex and
non-convex stochastic loss functions.

▶ FLCau can be applied on top of existing cost-efficient methods, such as Top-q and
LAQ

▶ Numerical results indicated that FLCau reduces the total cost by 60% while
achieves a near-optimal test accuracy
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Thanks for your attention.

Questions?


