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x Not considering the cost of running each iteration of an iterative ML over networks
even while applying the well-known communication-efficient methods as:
 Top-q sparsification [1]
o Lazily aggregated gradient quantization (LAQ) [2]

» Adapt to the underlying communication protocols

» What we address is called “ML over networks” [3]

e Distributed optimization for ML over a wireless communication network
e The computations and communications must be efficient

[1] Sattler et al. Robust and communication-efficient federated learning from non-iid data. |EEE Transactions on Neural Networks and
Learning Systems 2019.

[2] Sun et al. Lazily aggregated quantized gradient innovation for communication-efficient federated learning. |EEE Transactions on Pattern
Analysis and Machine Intelligence 2020.

[3] Mahmoudi et.al Cost-efficient Distributed Optimization In Machine Learning Over Wireless Networks. IEEE 1CC 2020.



Overview of Federated Learning (FL) /~

pa Mniif'
Federated learning network setup [4], [5]: n@ \@.
» Star network: one master node and M workers Figure 3
» Every worker j = 1,2,..., M has its own dataset with N; samples
» Data sample in each worker j is xj;, y;;
| 4

Workers aim to collaboratively solve the optimization problem (1)

w* € min f(w)= Z - Z f(w; xij, yij) (1)

weRe JE[M] 2 jetm Nj ie(N;]

[4] Konetn et al. Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492, 2016.

[5] Chen et al. A Joint Learning and Communications Framework for Federated Learning Over Wireless Networks. |EEE Transactions on
Wireless Communications, 2021.



FL: lterative Solution W e min F(w) =

- d

Z f(w; Xjjs y,/. (1)
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To solve (1), the iterative procedure

= Master D

at each iteration k=1,... K is W = | ode

Wi+1 —
. . orker N \ Worker j )
1. Every worker j € [M] updates its .@ e T\ )

local parameter w/_ ; as

wek

//\"

Figure 4

W’k+1—wk—— Z Vuf(wi; xij, i) (2)
IG[N]

2. All workers transmit their local parameter W{(H to the master node

3. Master node computes the global parameter w1 by taking a weighted sum over
all local parameters
N ,
J
Wi (3)

Wki1 = =
e Ni

JjEM]



w* € nlin f(w) = Z _ Z f(w:x,j.y,j),
Iterative procedure wend jem e N i Emy
; Worker 3
‘ “ «/Q(:J
To solve (1), the procedure = —
at each global iteration k=1,... K is — Qode
R k+1
. orker / Worker j
1. Every worker j € [M] updates 2 vl v\ )
its local parameter w after / =1,..., k local
ki Figure 4
iterations (define w’kJr1 = wy, and ij+1 = ij+1)
I -1 CQk /-1,
ij—i-l - ij N Z Vw f(wj XUayU) (4')

Federated Averaging (FedAvg) :

IG[NJ]

2. All workers transmit their local parameter W’,.(+1 to the master node

3. Master node computes the global parameter w1 by taking a weighted sum over

all local parameters

N. .
Wit = ﬁw]k—i-l (5)
je[M] jE€[M]
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System Model

Figure 4

K: the stopping step of the FL iterations

K := the first value of k | ||[f(wx) — f(w™)|| < e

€ > 0: the threshold at which we decide to stop the distributed FL algorithm
ck: the cost of iteration k

S K, ck = total cost of running the iterations (iteration-cost function)

5/31



Problem Formulation

> Let us consider as the general cost a multi-objective function of the iteration-cost
S°K_, ¢k and the loss function f(w)

» Qur problem consists in finding the stopping iteration that minimizes the cost of
solving problem (1)

mlnlmlze (B Z ck + (1 — (WK)) (7a)

s.t. mﬂk’ﬂ—wf’l Zv F(w}'™ % x5, vi) (7b)
IE[N]
N: .
Wiyl = ﬁ"’lkﬂ (7¢)
JE[M] jG[M] J

e B € (0,1): Scalarization factor

To solve problem (7), we need the future information of (f(wy), ck)k=1,. K

Non-Causal Problem!



Solution Approach

> Define G(K) = 8K, c+ (1 - B)f(wk),

k* € argmin G(K) (8a)
K
il il—1 Ok jl—1.
s.t. WJk+1 — ij - WJ Z wa(ij 'xij7yfj) Vk (Sb)
i€[N]
N; :
Wii1 = ﬁwjk—i-l vk (8¢)
jelm) —IEMI™

» G(k*): the optimum of (7)

The question is now how to solve optimization problem (8) in a causal way!



FL Causal Setting (FLCau) Algorithm to Solve Problem (8)

k=0
Local Computations
Each worker j performs in parallel: Local parameters
BS
Worker j Calculate:
Iteration cost ¢, w,
*
G(K)<G(K-1) D E— K=k, G(K)
j NO
k=K

Figure 5

» The algorithm is applicable in real world: solves problem (8) without future
information

» We prove that G(K) is discrete-convex

» G(K) allows to find the unique minimum (see next slide)
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Solution for Problem (8) for Convex Loss Functions

Causal Setting

» The FLCau Algorithm finds the optimal or near to the optimal solution

(" Proposition 1

FLCau solution k. is such that
o k* <k < k+1
o fwy) < f(wie)
o G(ko) > G(k*)

Let f(wy) be convex. Let k* be the solution to problem (8).

Then, the
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Cost-Efficient FL for Non-Convex Loss Functions
Challenges

» Consider non-convex loss function f(w) like Neural Networks (NNs) prediction loss

> Issue: the non-convexity leads to early stopping of FLCau
» Solution approach:

¢ Define decreasing upper bound F,(w) and lower bound Fj(w) functions for f(wy)
e Form upper and lower bounds on G(K)

« Find an interval of k. € [kY, k]

e The bounds do not change the training process and iteration-cost ¢

10/31



Cost-Efficient FL for Non-Convex Objective Functions
Upper and Lower Bounds

» Define multi-objective upper bound G,(K) and lower bound G;(K) functions

K
Gu(K) =B ck+(1—B)Fu(wk), (%)
k=1
K
G(K) =8> c+(1—B)F(wk) (9b)
k=1
» Calculating k;; and kf
k; € argmin Gu(K), (10a)
KeN
ki € argmin G(K) (10b)
KeN
» According to Proposition 2 about causal stopping iteration
ky < ki <k;+1, (11a)
ki < kI <kr+1 (11b)
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How to Build the Bounds of G,(K)

Algorithm

» We build decreasing sequences of (F,(wg))x and (F/(wg))k such that
Fi(wk) < f(wyg) < Fu(wg)

» Master node updates F,(w;)i=1.x and F/(w;)i=1.x at each iteration k

» Define F4 : N+— R as the approximation function

Fa(t; f(wir), f(wy,)) =gt + B, t € [ki, ko] (12)
f(wg) — f(w
g= Wia) — ( kQ), B = f(wk1) — gkt
ki — ko

31



Fa(t; f(wir), f(wy,)) = gt + B, t € [k, ko], (12)

Bounds Updates Flwi) — Flwy,)
g§=——">—, B=f(win)—ghk

ki — ko

» For k <2, set Fy(wyg) = Fi(wyg) = f(wy)
» Define (5;(' = F, (Wk) — (Wk 1) and 5;( = F/(Wk) — F/(Wk 1)

» At each iteration k:

o ki = max{t|F,(w:) > f(wy), t < k}
o kb= max{t|Fi(w;) = f(w,), t < k}
f(Wk), f(Wk 1) < f(Wk) < F (Wk 1)
Wk) Fu(wk_1) + 5//0 fwy) < f(wg_1) < F/(Wkr/mx) (13)
FA(/(), Fu(kal) < f(Wk) < F (Wk#]ax)
F/(Wk_l) + (5;(1, f(Wk 1) < f(Wk) < F (Wk 1)
Fi(wk) = Fa(k), f(wg) < f(wg_1) < F/(wk/ ) (14)

F/(kal) Jr(SE, F, (Wk 1) < f(Wk) < F, (Wku )

13/31



Solution for Problem (8) for Non-convex Losses

Causal Setting

» The FLCau Algorithm finds the optimal or near to the optimal solution

( Proposition 2

Let f(wy) be non-convex. Let k* be the solution to problem (8). Then, the
FLCau solution k is such that min {k., k!} < ko < max{kl k¢}

c k" <k <k*+A

o f(wi) < f(wg)

* G(ke) = G(k)

14 /31
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Numerical Results

Parameters

Star network with one master node

>

v

Perform FL over an image classification task using the MNIST dataset

» M: Number of workers

v

Logistic regression loss function as
= g 3 los (1 e ) (19
JEIM] Nj i€[N;]

Number of bits as the iteration-cost
d = 784 in MNIST dataset
Consider |[My| =

v

v

v
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Figure 4: FL problem over wireless networks.

We model the cost ¢, = Z;‘:l {; i as the latency

for wireless communication and computation, defined as follows:

/1, latency in broadcasting parameters by master node

U5 i latency in computing w’k for every worker node j

/3 : latency in sending w’k to master node in a multiple access channel

U4 latency in updating parameters at the master node

16 /31



[teration Cost

Computation Latency
Computation latency: Computation latency in master node + Local computation latency

» Computation latency in master node (¢4 x) < Local computation latency(4s k)

Parallel computations in workers
All workers wait for the slowest worker before transmission
The computation latency of each worker j € [M] obtained as £, , = a,|D;|/v; [6]

v

v

\4

. ai is the number of processing cycles to execute one sample of data (cycles/sample)
* v} is the central processing unit (cycles/sec)

» The computation latency at each iteration k is upper-bounded by

El
£2,k S |D’ max 7k (16)
€M) | v,

where |D =3y | Djl.

[6] Nguyen et.al Efficient Federated Learning Algorithm for Resource Allocation in Wireless loT Networks. 1EEE Internet of Things Journal
2020.



[teration Cost

Communication Latency

Gradient data uBackground traffic

g-) = (8

Ny (i) —— — )

p— @ _ / BS\ Worker [l

Figure 4: FL problem over wireless networks.

» Multiple Access protocols like Slotted-ALOHA and CSMA/CA

> Local FL parameters are head-of-line packets at each iteration k.

> px and p, are transmission probability, and background packet arrival probability at each
time slot

18/31



Transitions Probabilities in State Graph

Po,1 P11 PM oMt PM 1M1 PM-1M

Figure 5: Overall view of the state graph with M 4+ 1 states.

» p;;: the probability that no new node transmits. Possible scenarios:

¢ Pr{No successful transmission in the system},
¢ Pr{ldle time slot},

¢ Pr{Just one of the node j € {1,2,...,i} transmits a background packet successfully}.
> piit1: the probability of a new node transmits successfully.

19/31



Upper Bound on Communication Cost

11 P12 p,v,“,,,1 PM-1,m

E P)/_\0,1 p /f’Zﬁ PM 2,M-1

Figure 5: Overall view of the state graph with M + 1 states.
» ts: Duration of one time slot (sec)

» p: Probability of an idle time slot

» [E{¢3,}: Average communication latency in iteration k

M—1 N
E{l3x} < ts <Z {Pi,i+1 + (p,p,”)2}> , (17)

i=0

o= D (),
Pi,i = PrPx j:1j ( _/)I

piiv1 = (M — i) px(1 — px)

ij l_pr)

M—i—1

20/31



Numerical Results

Parameters

» Star networks with one master node

» Slotted-ALOHA and CSMA/CA as the uplink channel
> Perform FedAvg over MNIST dataset

» Neural Networks (NNs) prediction loss functions

> Latency as the iteration-cost

> psx: Transmission probability at each time slot

> p,: Packet arrival probability in each time slot

M: Number of workers

v

21/31



Numerical Results: Slotted-ALOHA and CSMA/CA

NNs prediction loss functions

! T
E{f(wy)} —— E{G(K(e)} — f(wp)
1 E{Fu(wy)} s 08 E{Gu(K(<)} 1 —_— Fu(wy)
B {F (w))} g E{G(K()} Fy(wy)
= 2
S 2 .
£ = 0.6
2 %
2 0.5 2 04
3 g
s 02
L - L 0 1 I ] 0 — L L -
0 50 100 150 200 0 50 100 150 200 0 50 IQO 150 200
Iteration k Tteration & Tteration k
(a) Loss functions after 100 realizations. (b) G(K (&) after 100 realizations. (c) One trial loss functions.

Figure 6

» Bounds correctly track true loss function (a)

> kY =39, ke = 43, k. = 48 shows that the difference between optimal and
suboptimal number of iterations is small (b)

» Loss function and its bounds after one realization (c) and 100 realizations (a)

22 /31



Numerical Results: Slotted-ALOHA and CSMA/CA

Stopping lIteration

Stopping iteration k

Stopping iteration k

L L L L
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Transmission probability ..
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= ke, slotted-ALOHA —&— K., sloted-ALOHA = = = k-, CSMAICA ---# kC.CSMA/CA‘
B T T T T
>
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g (R L g
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Network size M

(e) k™ and k. vs M.

Network size M

(f) Test accuracy vs M.

Figure 7
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b4l Numerical Results: Slotted-ALOHA and CSMA/CA

¥ och KoNsT

Iteration-cost

=== C(kx), Slotted ALOHA —8— C'(k), Slotted ALOHA = = = G (kx), CSMA/CA
-o-m.-. C(kp), CSMA/CA ———— C/(k(), Upper Bound
0.5 ———— 0T T T % 08
o o4 ~ 151 | _ 06
g 0 < 0l 4% 04
S~ | D _ 4 D
0 0.3 N o 5 0.2
0l :
, 0 - 0
0-200.2040.60.5 1 0 0.20.40.60.8 1 20 40 60 80 100

Arrival probability p,

Network size M

Transmission probability p

(a) Tteration-cost C'(k*) (b) Iteration-cost C'(k™)  (¢) Tteration-cost C'(k*)

and C'(ko) VS pa. and C'(ke) Vs pr. and C(ke) vs M. Figure 8
» The bound on iteration cost ¢, in MAC protocols works on the simulation results
» Transmission probability py has the least effect on C(K), (a)
» Packet arrival probability has the most effect, (b)
» Number of workers M also affects the iteration cost, but the effect is small, (c)
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Top-q Sparsification
Methodology
» Communicate only a fraction (q) of largest elements with full precision [1]

e Other elements are not communicated
 New dimension d; := [g * d], g € (0,1]

v

V= ZiE[NJ_] Vuf (Wi xij, yij), Vi € RY

> @Jk := Reduced vector of Vj, @Jk € R%

v

Estimated global update W := Wiy — 3y Vi/M

» ¢, := number of communication bits

v

Calculate G(k) with estimated Wy, and (W)

v

Robustness to non-i.i.d. data is due to mainly two reasons:

e The frequent communication of weight updates prevents the weights from diverging too far
* The noise in the stochastic gradients is not amplified by quantization

[1] Sattler et al. Robust and communication-efficient federated learning from non-iid data. |EEE Transactions on Neural Networks and
Learning Systems 2019.



FLCau and Top-g Sparsification

Characterizing lteration-Cost . YES k=0 NO
Local Computations
Each worker j performs in parallel: it
(Top-a) ¥
New dimension: « BS }
j=1, M d,:=lq xdl %,
G(K) < G(K-1) ———— K=k, &(K)
Figure 9 l NO
» Dimension-reduction to ds < d: k=K

e ds=[gx*d], g€ (0,1]

e Each worker j transmits the largest ds; components of its local vector
» Element-wise quantization of each reduced vector

e by < 32: number of bits of each element when applying top-g method

» The total number of transmitted bits at each iteration k:

¢ = Mdyb; < 32Mds (18)

26/



Lazily Aggregated Quantized Gradient (LAQ)

Methodology

» Reduces the number of worker-to-BS uplink communications [2]
w/(wy): the quantized gradient per worker j € My, |My| < M
= {t”*’ e My

Wy, J# Mi
Ri = IV wf(wh) = o ()l
Quantization granularity is defined as 7 := 1/(2° — 1)

v

v

v

v

e b: number of communication bits
sul = w(wy) — W(W,_|) = 2rRLw (wy) — RI1
e 1=11,...,1]7
Global update at each iteration in BS: w1 = wy — o,V

e Vi =Vi_1+ zjeMk 6uf(
e Transmitted by 32 4 bd bits instead of 32d

v

v

[2] Sun et al. Lazily aggregated quantized gradient innovation for communication-efficient federated learning. |EEE Transactions on Pattern
Analysis and Machine Intelligence 2020.
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FLCau and LAQ
Characterizing lteration-Cost

l k=0
Local Computations
Each worker j performs in parallel:
L2 o, BS

Worker j | Cal?ﬁfte: Calculate:

Local gradients

jeM, W

|

G(K) < G(K-1) ~— — K =k, G(K)

NO

k=K

Figure 10
» Element-wise quantization with b bits and vector dimension d

k= |M|(32 + bd) < M(32 + bd)

(19) 5,



Table 1: M =50, [My| = M, by = 32

Comparison Between FLCau and Traditional Methods

Stop iteration Total cost (x10° | Test accu-
Method bits) racy (%)
FLCau LAQ, b=2 57 4.56 94.2
FLCau LAQ, b= 10 43 16.92 87.8
FLCau Top-q, g =0.6 |43 32.4 80.9
FLCau 56 70.24 96.4
FL LAQ, b=2 200 16 98
FL LAQ, b=10 200 78.7 98.7
FL Top-q, g = 0.6 200 150.72 97.5
FL 200 250.88 99.02

» Significant reduction in total cost with FLCau
» Trade off between test accuracy and total cost
» More than 60% improvement in cost reduction
 Test accuracy reduction of 1-15 %

29/31



Numerical Results
FLCau applied on top of LAQ and top-g

LAQ. b =2 mmm=LAQ b = 10 —+— Top-q, g = 0.1

—#— Top-q. ¢ = 0.6 Top-q. ¢ = 1
1 1 0.95 =
z z 0.8 =
g |2
g 08 Z 06 |
Q
2 0.75 =
2 Z 0.35
5 065 1 & 4 |
| | | | 0.1E i
0557 15 30 45 60 0 15 30 45 60
Communication iteration k Communication iteration k
(a) Loss functions. (b) Test accuracy.

Figure 11
» Numerical results with FLCau, M = 50

» Test accuracy while applying FLCau:

» Top-g with g = 0.1 outperforms the case g = 0.6 by 13%
* LAQ with b = 2 has the closest accuracy (94%) to the FLCau (96%)
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Conclusion

» We proposed an optimization of the communication-computation costs for solving
an FL training problem

» We established a novel cost-efficient FL algorithm (FLCau) for both convex and
non-convex stochastic loss functions.

» FLCau can be applied on top of existing cost-efficient methods, such as Top-g and
LAQ

» Numerical results indicated that FLCau reduces the total cost by 60% while
achieves a near-optimal test accuracy
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