
ar
X

iv
:2

20
4.

07
77

3v
1

 [
cs

.L
G

]
 1

6
A

pr
 2

02
2

1

FedCau: A Proactive Stop Policy for

Communication and Computation Efficient

Federated Learning

Afsaneh Mahmoudi1, Hossein S. Ghadikolaei2, José Mairton Barros Da Silva

Júnior1,3, and Carlo Fischione1

Abstract

This paper investigates efficient distributed training of a Federated Learning (FL) model over

a wireless network of wireless devices. The communication iterations of the distributed training

algorithm may be substantially deteriorated or even blocked by the effects of the devices’ background

traffic, packet losses, congestion, or latency. We abstract the communication-computation impacts as

an ‘iteration cost’ and propose a cost-aware causal FL algorithm (FedCau) to tackle this problem. We

propose an iteration-termination method that trade-offs the training performance and networking costs.

We apply our approach when clients use the slotted-ALOHA, the carrier-sense multiple access with

collision avoidance (CSMA/CA), and the orthogonal frequency-division multiple access (OFDMA)

protocols. We show that, given a total cost budget, the training performance degrades as either the

background communication traffic or the dimension of the training problem increases. Our results

demonstrate the importance of proactively designing optimal cost-efficient stopping criteria to avoid

unnecessary communication-computation costs to achieve only a marginal FL training improvement.

We validate our method by training and testing FL over the MNIST dataset. Finally, we apply

our approach to existing communication efficient FL methods from the literature, achieving further

efficiency. We conclude that cost-efficient stopping criteria are essential for the success of practical

FL over wireless networks.

Index Terms

Federated learning, communication protocols, cost-efficient algorithm, latency, unfolding feder-

ated learning.

I. INTRODUCTION

The recent success of artificial intelligence and large-scale machine learning heavily relies

on the advancements of distributed optimization algorithms [1]. The main objective of such

1The authors are with the School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology,

Stockholm, Sweden (Email: {afmb, jmbdsj, carlofi}@kth.se).

2The author is with Ericsson, Stockholm, Sweden (Email: hossein.shokri.ghadikolaei@ericsson.com).

3The author is with Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 USA.

http://arxiv.org/abs/2204.07773v1

algorithms is better training/test performance for prediction and inference tasks, such as image

recognition [2]. However, the costs of running the algorithms over a wireless network may

hinder achieving the desired training accuracy due to the communication and computation

costs. The state-of-the-art of such algorithms requires powerful computing platforms with vast

amounts of computational and communication resources. Although such resources are available

in modern data centers that use wired networks, they are not easily available at wireless

devices due to communication and energy resource constraints. Yet, there is an emerging

need to extend machine learning tasks to wireless communication scenarios. Use cases include

machine leaning over Internet-of-Things, edge computing, or public wireless networks serving

many classes of traffic [3]

One of these prominent algorithms is Federated Learning (FL), which is a new machine

learning paradigm where each individual worker has to contribute in the learning process

without sharing its own data to other workers and the master node. Specifically, FL methods

refer to a class of privacy-preserving distributed learning algorithms in which individual worker

nodes [M] execute some local computations and share only their parameter/gradients, instead

of the local raw data, with a central controller for global model aggregation [4]. The FL

problem consists in optimizing a finite sum of M differentiable functions fj , j ∈ [M], which

take inputs from R
d for some positive d and give their outputs in R, i.e., {fj : R

d 7→ R}j∈[M]

with corresponding local parameters {wj ∈ R
d}j∈[M]. The common solution to such a problem

involves an iterative procedure wherein at each global communication iteration k, worker nodes

have to find the local parameter {wj
k}j∈[M] and upload them to a central controller. Then, the

master node updates the model parameters as wk+1 and broadcasts it to all the nodes to start

the next iteration [5].

The FL algorithm alleviates computation and privacy by parallel computations at worker

nodes using their local private data [5]. However, such algorithm introduces a communication

cost: parameter vectors, such as weight and bias, must be communicated between the master

and the worker nodes to run a new iteration. The weights can be vector of huge sizes

whose frequent transmissions and reception may deplete the battery of wireless devices.

Therefore, every communication iteration of these algorithms suffers some costs 1, e.g.,

computation, latency, communication resource utilization, energy. As we argue in this paper,

the communication cost can be orders of magnitude larger than the computation costs, thus

making the iterative procedure over wireless networks potentially very inefficient. Moreover,

due to the diminishing return rule [6], the accuracy improvement of the final model gets

smaller with every new iteration. Yet, it is necessary to pay an expensive communication cost

to run every new communication iteration of marginal importance for the training purpose.

1Throughout the paper, we use “communication-computation cost” and “iteration cost” interchangeably.

2

In this paper, we investigate the problem of FL over wireless networks to ensure an efficient

communication-computation cost. Specifically, we define our FL over wireless networks as

follows. We consider a star network topology, and focus on avoiding the extra communication-

computation cost paid in FL training to attain a marginal improvement. We show that a

negligible improvement in training spends valuable resources and hardly results in tests

accuracy progress. We propose novel and causal cost-efficient FL algorithms (FedCau) for both

convex and non-convex loss functions. We show the significant performance improvements

introduced by FedCau through experimental results, where we train the FL model over the

wireless networks with slotted-ALOHA, CSMA/CA and OFDMA protocols. We apply FedCau

on top of two well-known communication-efficient methods, Top-q and LAQ [7], [8] and

the results show that FedCau algorithms further improve the communication efficiency of

other communication-efficient methods from the literature. Our extensive results show that

the FedCau methods can save the valuable resources one would spend through unnecessary

iterations of FL, even when applied on top of existing methods from literature focusing on

resource allocation problems [5], [9]–[11].

A. Literature Survey

Cost-efficient distributed training is addressed in the literature through the lens of

communication-efficiency [4], [12]–[20] or tradeoff between computation and communication

mostly by resource allocation [11], [21]. Mainly, we have two classes of approaches

for communication-efficiency in the literature focusing on: 1) data compression, such as

quantization and sparsification of the local parameters in every iteration, and 2) reduction

of the communication iterations.

The first class of approaches focuses on data compression, which reduces the amount

of information exchanged in bits among nodes, thereby saving communication resources.

However, we may need more iterations to compensate for quantization errors than the

unquantized version. Recent studies have shown that proper quantization approaches, together

with some error feedback, can maintain the convergence of the training algorithm and the

asymptotic convergence rate [12]–[14]. However, the improved convergence rates depend

on the number of iterations, thus, requiring more computation resources to perform those

iterations. Sparsification is an alternative approach to quantization to reduce the amount of

exchanged data for running every iteration [15]. A prominent example of this approach is

top-q sparsification, where a node sends only the q most significant entries, such as the ones

with the highest modulus, of the stochastic gradient [12], [16].

The second class of approaches focuses on reduction of the communication iterations

by eliminating the communication between some of the workers and the master node in

some iterations [17]. The work [17] has proposed lazily aggregated gradient (LAG) for

3

communication-efficient distributed learning in master-worker architectures. In LAG, each

worker reports its gradient vector to the master node only if the gradient changes from the

last communication iteration are large enough. Hence, some nodes may skip sending their

gradients at some iterations, which saves communication resources. LAG has been extended

in [18] by sending quantized versions of the gradient vectors. In [20], local SGD techniques

reduce the number of communication rounds needed to solve an optimization problem. In a

generic FL setting, adding more local computations may reduce the need for frequent global

aggregation, leading to a lower communication overhead [4]. Moreover, it allows the master

node to update the global model with only a (randomly chosen) subset of the nodes at every

iteration, which may further reduce the communication overhead and increase the robustness.

The work in [19] has improved the random selection of the nodes and proposed the notion of

significance filter, where each worker updates its local model and transmits it to the master

node only when there is a significant change in the local parameters. In [22], the notion of local

drift has been introduced as a measure to trigger an upload to the master node. Moreover, [19]

has showed that adding a memory unit at the master node and using ideas from SAGA [23]

reduce the upload frequency of each worker node, thus improve the communication efficiency.

The aforementioned two classes still leave significant space to further reduce the actual

cost of running a distributed training algorithm and its adaptation to the underlying wireless

communication protocol. The same compression or model averaging algorithm may exhibit

completely different values for latency or energy consumption in different communication

settings. The main problem is that the two classes mentioned above assume that the complexity

of an iterative algorithm is given by the number of bits per communication round, or the number

of communication rounds [9]. However, they neglect other very important costs involved in

solving an FL problem: overall latency and communication resource consumption. These costs

become of paramount importance when we implement FL on bandwidth or battery-limited

wireless networks, where latency (e.g., wireless automation) [3] and energy consumption (e.g.,

common smartphones or low power Internet-of-Things) [21] may render useless the distributed

algorithm and the ultimate solution.

There have been some recent works on the co-design of optimization problems and

communication networks, mainly for the task of computational offloading. Reference [10]

has considered the problem of task offloading using nearby edge devices to reduce the service

delay, considering the loads and energy of the cloudlets. Yang et. al. [11] focused on optimizing

the resource allocation for running FL. Different from the literature, we propose in this work

to proactively design the stopping criteria to optimize such tradeoff. Our approach is original

because it contrasts with the state-of-the-art algorithms where stopping criteria are treated as

a hyper-parameter and manually set via heavy cross-validations.

4

In our preliminary works, we have characterized the overall communication-computation

of solving a distributed gradient descent problem where the worker nodes had background

traffic and followed a channel from medium access control (MAC) protocols using random

access, such as slotted-ALOHA [24] or CSMA/CA [25] in the uplink. Going beyond such

papers, to achieve a cost-aware training workflow, we need to consider the diminishing return

rule of the optimization algorithms, which reveals that as the number of iterations increases,

the improvement in training accuracy decreases. Then, we need to balance iteration-cost and

the achievable accuracy before the algorithm’s design phase. This paper constitutes a major

step to address this important research gap. Previously in [24], [25], we proposed a cost-

efficient framework considering the cost of each iterations of gradient descent algorithms

along with minimizing a convex loss function. However, the theory of these papers was only

limited to convex loss functions, the iteration costs did not consider FedAvg algorithm and the

computation latency, and there was no adequate study between the achievable test accuracy

and the iteration costs. Hence, this paper proposes a new and original study compared to our

preliminary works by

1) considering FedAvg algorithm,

2) assuming both convex and non-convex loss functions, and

3) developing a novel theoretical framework for FedAvg that includes the communication-

computation costs.

We apply the proposed framework to several wireless communication protocols, and other

communication-efficient algorithms for which we show original training and testing results.

B. Contributions

We investigate the trade-off between achievable FL loss and the overall communication-

computation cost of running the FL over wireless networks as an optimization problem. The

main contributions of this work are summarized as:

• We propose a new multi-objective cost-efficient optimization that trades off the model

performance and the communication costs for an FL training problem over wireless

networks;

• We develop three novel causal solution algorithms, named FedCau, to the multi-objective

optimization above, one with focus on original FL and the others with focus on stochastic

FL. We establish the convergence of these algorithms for FL training problems using both

convex and non-convex loss functions;

• We investigate the training and test performance of the proposed algorithms using real-

world datasets, such as MNIST, over the following communication protocols: slotted-

ALOHA, CSMA/CA and OFDMA. We consider these protocols because they are the dom-

5

inant communication protocols in most wireless local area networks, such as IEEE 802.11-

based products [26], or fixed assignment access protocol such as OFDMA [27].

• We apply our proposed FedCau on top of the top-q sparsification and lazily aggregated

quantized gradient (LAQ) methods to demonstrate the vast application of our cost-efficient

approach [7], [8].

• The experimental results highlight the ability of our proposed FedCau algorithms to

achieve an efficient and accurate training and we conclude that a co-design of distributed

optimization algorithms and communication protocols are essential for the success of

cost-efficient FL over wireless networks, including its applications to edge computing

and Internet-of-Things.

The rest of this paper is organized as follows. Section II describes the general system

model and problem formulation. In Section III, we derive some useful results and propose

our non-causal and causal FL algorithms (FedCau), which are by design intended to run

over communication networks. In the analysis, we consider both convex and non-convex

loss functions. In Section IV, we apply our algorithms to slotted-ALOHA, CSMA/CA, and

OFDMA. In Section V, we analyze the performance of the proposed FedCau algorithms. We

then conclude the paper in Section VI. We have moved all the proofs and extra materials to

the Appendix.

Notation: Normal font w, bold font small-case w, bold-font capital letter W , and

calligraphic fontW denote scalar, vector, matrix, and set, respectively. We define the index set

[N] = {1, 2, . . . , N} for any integer N . We denote by ‖ · ‖ the l2-norm, by |A| the cardinality

of set A, by [w]i the entry i of vector w, and by w
T the transpose of w.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we represent the system model and the problem formulation. First, we

discuss the FedAvg algorithm, and afterwards, we propose the main approach we propose in

this paper.

A. Federated Learning

Consider a star network of M worker nodes that cooperatively solve a distributed training

problem involving a loss function f(w). Consider D as the whole dataset distributed among

each worker j ∈ [M] with Dj data samples. Let tuple (xij , yij) denote data sample i of

|Dj| samples of worker node j and w ∈ R
d denote the model parameter at the master node.

Considering
∑M

j=1 |Dj | = |D|, and j, j′ ∈ [M], j 6= j′, we assume Dj ∩Dj′ = ∅, and defining

ρj := |Dj|/|D|, we formulate the following training problem

w
∗ ∈ arg min

w∈Rd
f(w) =

M
∑

j=1

ρjfj(w), (1)

6

TABLE I: List of main notations.

Notation Definition

C Overall communication-computation cost

D Data sample

E Number of local iterations

Fl Lower bound function

Fu Upper bound function

F̃ Estimation of non-convex loss function

G communication-computation cost function

Ĝ Estimated communication-computation cost function

G̃ Estimation of non-convex G

K Stopping communication iteration

Kmax Maximum number of iterations

L Gradient Lipschitz parameter

R Data rate

Sc Maximum number of OFDMA subchannels

T Time budget

Ts Maximum allowable time budget

a
Number of processing cycles per sample (cycles/sam-

ple)

b Number of bits

c Current communication-computation cost

d Dimension of FL model parameter

f Loss function

f̂ Mini-batch estimated loss function

hl Channel gain of OFDMA

k Current communication iteration

kc Causal stopping communication iteration

k∗ Optimal stopping communication iteration

p̂ Probability of an idle time slot

pl Transmit power of link l in OFDMA

px Transmission probability per slot

pr Background packet arrival probability per slot

q Sparse factor

r Distance from worker to master node

w Initial backoff window size

w Global FL parameter

w
∗ Optimal FL parameter

x Training data matrix

y Training data label

α FL step size

β Multi-objective scalarization parameter

γ Positive value

ǫ Decision threshold

ℓ Latency

ξ Data portion

ν Central processing unit (cycles/s)

ρ Data portion factor

σ Noise power

ζ OFDMA fading channel parameter

7

where fj(w) :=
∑|Dj |

i=1 f(w;xij , yij)/|Dj|. Optimization problem (1) applies to a large group

of functions as convex and non-convex (such as a deep neural networks).

The standard iterative procedure to solve optimization problem (1) with the initial vector

w0 is

wk =
M
∑

j=1

ρjw
j
k, k = 1, . . . , K. (2)

For a differentiable loss function f(w), we choose to perform (2) by the Federated Averag-

ing (FedAvg) algorithm.

Initializing the training process with w0, Federated Averaging (FedAvg) is a distributed

learning algorithm in which the master node sends wk−1 to the workers at the beginning

of each iteration k ≥ 1. Every worker j ∈ [M] performs a number E of local iterations,

i = 1, . . . , E, of stochastic gradient descent [8] with data subset of ξjk ≤ |Dj|, and computes

its local parameter w
j
i,k, considering the initial point of w

j
0,k = wk−1, [28]

w
j
i,k ←− w

j
i−1,k −

αk

ξjk

ξj
k

∑

n=1

∇wf(wj
i−1,k;xnj, ynj), k = 1, . . . , K, (3)

where w
j
k = w

j
E,k. Then each worker transmits w

j
k to the master node for updating wk

according to (2). Note that in FedAvg, when E = 1 and we use the exact gradient vector

on the place of the stochastic gradient, we achieve the basic FL algorithm. Considering the

FedAvg solver (3) for the updating process in (2), and without enforcing convexity for f(w),

we use the following Remark throughout the paper.

Remark 1. [Theorem 11.7 of [29]] Consider any differentiable loss func-

tion f(w) : R
d 7→ R with Lipschitz continuous gradient ∇wf(w), i.e.,

‖∇wf(w1) − ∇wf(w2)‖ ≤ L‖w1 − w2‖, for some constant 0 < L < ∞,

and let w1, . . . ,wk be the sequence obtained from the FL algorithm updates in Eq. (2). Then,

by αk ≥ γ‖∇wf(wk)‖
2 and for an appropriate constant γ > 0, the following inequality

holds: f(w1) ≥ . . . ≥ f(wk).

The workers use the FedAvg algorithm (3) to compute their local parameters w
j
k, while the

master node performs the iterations of (2) until a convergence criteria for ‖f(wk)− f(w∗)‖

is met [30]. We denote by K the very first communication iteration at which the stopping

criteria of FedAvg algorithm is met, namely

K := the first value of k | ‖f(wk)− f(w∗)‖ < ǫ , (4)

where ǫ > 0 is the decision threshold for terminating the algorithm at communication iteration

K and f(w∗) is the optimum of the loss function at the optimal shared parameter w∗. At the

state-of-the-art literature, the threshold ǫ is independently defined before the training process.

However, when we are taking into account the communication-computation costs to solve (1),

8

the threshold must be optimally designed to train the FL model without wasting the available

limited communication-computation resources. According to Eq. (4), designing such threshold

would require to know f(w∗) before starting the training procedure, which is not realistic.

Thus, in this paper we propose an alternative approach that focuses on finding K in (4) we

argue in the paper that our approach does not require to know f(w∗) beforehand. Therefore,

the central result of this paper consists in finding such K as a function of the communication-

computation cost along with the loss function of the FedAvg algorithm (3). We will substantiate

this significant result in Section II-B.

Let ck > 0, k = 1, 2, . . ., denote the cost of performing a complete communication iteration

k. Accordingly, when we run FedAvg, namely an execution of (2) and (3), the complete

training process will cost
∑K

k=1 ck. Some examples of ck in real-world applications are:

• Communication cost: ck is the number of bits transmitted in every communication iteration

k with or without a fixed packet structure;

• Energy consumption: ck is the energy needed for performing a whole training iteration

to receive wk at a worker and send back {wj
k}j∈[M] to the master node over the wireless

channel;

• Latency: ck is the overall delay to compute and send parameters from and to the workers

and the master node over the wireless channel [11].

Considering latency as the iteration cost, the term ck for running every training iteration of

the FedAvg algorithm (3) is generally given by the sum of four components:

1) ℓ1,k: communication latency in broadcasting parameters by master node;

2) ℓ2,k: the computation latency in computing w
j
k for every worker node j;

3) ℓ3,k: communication latency in sending w
j
k to master node;

4) ℓ4,k: computation latency in updating parameters at the master node.

See Section IV for more detailed modelling of the components of ck for the slotted-ALOHA,

CSMA/CA, and OFDMA protocols.

B. Problem Formulation

To solve optimization problem (1) over a wireless network, the FedAvg algorithm (3) faces

two major challenges:

1) Computation-communication cost: It does not consider the cost associated with the

computation and communication of the local parameters and the reception of the updated

model sent by the master node. Clearly, such a cost must be a function of the computation

power and resources of the local device, communication protocols, the energy for

transmission, and the communication resources in general;

9

2) Total number of iterations: The number of iterations K in (4) for the termination of

the training algorithm (3) has a significant role in determining the communication-

computation cost of the model training. Therefore, it can be that the number of

iterations K in (4) results in huge communication-computation costs without resulting in

better training performance. Thus, a lower K would have consumed few resources while

obtaining a negligible training optimality degradation.

Thus, the termination iteration K in (4) heavily impacts the overall training costs to solve

the optimization problem (1). This behavior indicates that the performance of FedAvg (3)

over wireless networks could be catastrophic in terms of communication-computation resource

utilization without a good choice of K.

To address the two challenges aforementioned, we propose an original optimization of the

termination iteration K in (4) in the FedAvg algorithm (3), where we explicitly consider the

cost associated to running training iterations. This is possible by appropriately finding an

optimal stopping iteration. To do so, we propose the following optimization problem

minimize
K

[

f(wK),

K
∑

k=1

ck

]

(5a)

subject to wk =
M
∑

j=1

ρjw
j
k, k = 1, . . . , K (5b)

w
j
0,k = wk−1, k = 1, . . . , K (5c)

w
j
i,k ←− w

j
i−1,k −

αk

ξjk

ξj
k

∑

n=1

∇wf(wj
i−1,k;xnj , ynj), k = 1, . . . , K, (5d)

where
∑K

k=1 ck quantifies the overall iteration-cost expenditure for the training of loss

function f(w) when transmitting in a particular wireless channel in uplink. Note that (5a)

represents a multi-objective function, which aims at minimizing the training loss function

f(w) and the overall iteration cost
∑K

k=1 ck. Note that the values of ck, for k ≤ K, can be, in

general, a function of the parameter wk, but neither ck nor wk are optimization variables of

problem (5a). Optimization problem (5) states to devote communication-computation resources

as efficiently as possible while performing FedAvg algorithms (3) to achieve an accurate

training result for loss function f(w). To summarize, by solving optimization problem (5a),

we can obtain the optimal number of iterations for FedAvg algorithm (3) which minimize the

communication-computation costs while also minimizing the loss function of FedAvg.

Remark 2. We have formulated optimization problem (5) according to the “unfolding method”

of iterative algorithms [31], where it is ideally assumed that the optimizer knows beforehand

(before iterations (2) and (3) occur) what the cost of each communication iteration in (2)

would be and when they would terminate. Such an ideal formulation cannot occur in the

real world since it assumes knowledge of the future, thus being called “non-causal setting”.

10

However, this formulation is useful because its solution gives the best optimal value of the

stopping iteration k∗. In this paper, we show that we can convert such a non-causal solution

of optimization problem (5) into a practical algorithm in a so-called “causal setting”. We

will show that the solution to the causal setting given by the practical algorithm is very close

to k∗.

Optimization problem (5) is hard to solve for several reasons: it is multi-objective; it is an

integer problem since the variable is K; it has objective and constraint functions that are not

analytical functions at K, in other words, K depends on the objective and constrain functions in

a non-explicit manner; and most importantly, it is a non-causal problem formulation meaning

that the derivation of the optimal K would need to know wk’s before they are available.

Generally, it is very challenging to solve these non-explicit and non-causal optimization

problems [32]. In the next section, we propose a practical solution to the problem (5).

III. SOLUTION ALGORITHMS

In this section, we first give some preliminary technical results and then we propose an

iterative solution method to optimization problem (5). Subsequently, we show that the proposed

solution method achieves the optimal, or near to the optimal solution, and converges in a finite

number of steps.

A. Preliminary Solution Steps

In this section, we develop some preliminary results to arrive at a solution to optimization

problem (5). We start by transforming (5) according to the scalarization procedure of multi-

objective optimization [32]. Specifically, we define the joint communication-computation cost

and the loss function of FedAvg algorithm (3) as a scalarization of the overall iteration-cost

function
∑K

k=1 ck and the loss function f(wK). Note that such a joint cost is general in

the sense that, depending on the values of ck, it can naturally model many communication-

computation costs (see Section IV) including constant charge per computation and mission-

critical applications.

We transform the multi-objective optimization problem (5) into its scalarized version as

k∗ ∈ argmin
K

G(K) (6a)

subject to wk =

M
∑

j=1

ρjw
j
k, k = 1, . . . , K (6b)

w
j
0,k = wk−1, k = 1, . . . , K (6c)

w
j
i,k ←− w

j
i−1,k −

αk

ξjk

ξj
k

∑

n=1

∇wf(wj
i−1,k;xnj , ynj), k = 1, . . . , K, (6d)

11

where G(K) and C(K) are defined as

G(K) := (βC(K) + (1− β)f(wK)) , (7)

C(K) :=
K
∑

k=1

ck. (8)

Note that C(K) is the iteration-cost function that represents all the costs the network spends

from the beginning of the training until the termination iteration K, and β ∈ (0, 1) is the

scalarization factor of the multi-objective scalarization method [32].

In the following lemma, we formalize that if G(K) is a monotonically decreasing function

of K, we can obtain k∗ at which G(K) is minimized.

Lemma 1. Consider optimization problem (6). Let G(K) be a non-increasing function of all

K ≤ k∗. Then, k∗ indicates the index at which the sign of discrete derivation [33] of G(K)

changes for the first time, i.e.

k∗ ∈ min{K|G(K + 1)−G(K) > 0} (9)

Proof: See Appendix A-A.

Now that we have given these preliminary technical results, we are ready to propose in

the next section, two algorithms to solve optimization problem (6). First, we describe the

non-causal setting to characterize the minimizer. Then, we offer a causal setting to construct

algorithms that obtain practical minimizers with convex and non-convex loss functions. Finally,

we establish the optimality and convergence of these algorithms.

B. Non-causal Setting

One of the simplest but purely ideal approaches to solve problem (6) is an exhaustive

search over the discrete set of K ∈ [0,+∞). To this end, we should have in advance, namely

at time k = 0, the sequence of (f(wk))k and (ck)k for all k ∈ [0,+∞). Although (ck)k may

be known a priori in some use cases, the sequence of parameters (wk)k, and consequently

the sequence of (f(wk))k, are not available in advance. For analytical reasons, our non-

causal setting assumes that all these values are available at k = 0. Although this approach

is not practical, we investigate it for the sake of analytical purposes because it gives the

ultimate minimizer k∗, which we can use later in the numerical results (see Section V)

as a benchmark to assess the performance of the following causal solution algorithms.

12

Algorithm 1: Cost-efficient batch FedCau.

1: Inputs: w0, (xij , yij)i,j , αk, M , {|Dj|}j∈[M],

ρj .

2: Initialize: kc = +∞, G(0) = +∞

3: Master node broadcasts w0 to all nodes

4: for k ≤ kc do

5: for j ∈ [M] do

6: Calculate f j
k :=

∑|Dj |
i=1 f(wk;xij , yij)/|Dj|

7: Compute w
j
k+1 ← wk − αk∇wf

j
k

8: Send w
j
k+1 and f j

k to the master node

9: end for

10: Wait until master node collects all {wj
k+1}j

and set wk+1 ←
∑M

j=1 ρjw
j
k+1

11: Calculate f(wk) :=
∑M

j=1 ρjf
j
k ,

12: Calculate ck and G(k)

13: if G(k) < G(k − 1) then

14: Master node broadcasts wk+1 to the

worker nodes

15: else

16: Set kc = k, Break and go to line 20

17: end if

18: Set k ← k + 1

19: end for

20: Return wkc
, kc, G(kc)

Algorithm 2: Stochastic cost-efficient mini-batch FedCau.

1: Inputs: w0, (xij , yij)i,j , αk, M , {|Dj |}j∈[M],

ρj

2: Initialize: kc = +∞, T = 0, and Ĝ(0) = +∞

3: Master node broadcast w0 to all nodes

4: for k ≤ kc do

5: Ma = {}

6: for j ∈ [M] do

7: Calculate f j
k :=

∑|Dj |
i=1 f(wk;xij , yij)/|Dj |

8: Compute w
j
k+1 ← wk − αk∇wf

j
k

9: Send w
j
k+1 and f j

k to the master node

10: end for

11: if k = 1 then master node:

12: Wait until receive all local parameters

13: Set wk+1 ←
∑M

j=1 ρjw
j
k+1

14: Calculate f(wk) :=
∑M

j=1 ρjf
j
k and

G(k)

15: Define Ts := Number of spent time slots

for completing first iteration

16: Set time budget T as T < Ts

17: else

18: for next time slot = 1, 2, . . . , T do

19: Ma ←Ma ∪ {successful nodes}

20: end for

21: Master node set

wk+1 ←
∑

j∈Ma
ρjw

j
k+1 +

∑

j′ /∈Ma
ρj′w

j′

k

22: Master node calculate

f̂(wk) :=
∑

j∈Ma
ρjf

j
k +

∑

j′ /∈Ma
ρj′f

j′

k−1 and Ĝ(k)

23: end if

24: if Ĝ(k) < Ĝ(k − 1) then

25: Master node broadcast wk+1 to the

worker nodes

26: else

27: Set kc = k, and ŵkc
← wk+1

28: Break and go to line 32

29: end if

30: Set k ← k + 1

31: end for

32: Return ŵkc
, kc, Ĝ(kc)

13

C. FedCau for Convex Loss Functions

In this subsection, we propose an approximation of the optimal stopping communication

iteration k∗, which we call kc. We will show that kc can be computed in practice by a causal

setting scenario, which is implementable in practice and computationally simple. We will show

that, under some conditions, kc is either k∗ or k∗ + 1. This means that either kc = k∗ when

k∗ = Kmax, where Kmax is the maximum allowable number of iterations (if there is any), or

kc = k∗ + 1 (see Section III-E).

To this end, here we develop two algorithms for solving (6). Algorithms 1 and 2 are two

variations of the implementation of FedAvg algorithm (3) with our causal termination approach,

FedCau, for batch and mini-batch implementations using convex loss functions.

In the batch update of Algorithm 1, workers compute {wj
k, f

j
k}j∈[M] and transmit them to

the master node (see lines 6-8). We assume that the local parameter of each worker consists of

the value of local FL model w
j
k and the local loss function f j

k
2. Then, the master node updates

wk, and f(wk), only after receiving all the local parameters {wj
k, f

j
k}j∈[M] from all workers

at each iteration k (see lines 10-11). Subsequently, the master node calculates the amount of

available resources, denoted as iteration cost ck, spent for computation and transmission of

local parameters. Initializing G(0) = +∞ to prevent stopping in the first iteration, the master

node updates the value of multi-objective cost function G(k) (see line 12). Thereafter, the

master node compares G(k) with its previous value G(k − 1) (see line 13), thus deciding

when to terminate the iterations (see lines 14-20).

In FedAvg, there are many schemes where only some of the workers can upload their local

parameters to the master node. The implicit sub-sampling (from set {wj
k}j∈[M]), which can

be interpreted as stochastic noise [34], leads to approximations of f(wk), denoted by f̂(wk).

Therefore, it leads to an approximation of the joint communication-computation and federated

learning cost function, denoted by Ĝ(K). Thus, differently from Algorithm 1, Algorithm 2

uses the mini-batch update to avoid spending extra resources for achieving a very small and

negligible test accuracy improvement. Algorithm 2 utilizes the descent property of FedAvg

algorithm (3) for a monotonic decreasing loss function f(w) explained in Remark 1. The

fundamental idea behind the mini-batch update of Algorithm 2 is to achieve a decreasing

sequence of f(wk)k and thus achieve a non-increasing behavior for G(k)k≤k∗.

Algorithm 2 performs the training process similar to Algorithm 1 at the first communication

iteration k = 1. Here, our proposal is that at the first iteration, the master node waits for all

worker nodes to successfully transmit their local parameters (see lines 7-12). Afterward, the

2We assumed that f
j
k ∈ R and w

j
k ∈ R

d, then the communication overhead, in term of number of bits, for transmission

of f
j

k is negligible compared to the local FL model w
j

k. Thus, we consider the local parameters consist of both local FL

model and local loss function value.

14

master node updates the global values of w1, f(w1) (see lines 13-14). Then, the master node

computes the resource used to perform the first communication iteration as c1 and defines it as

Ts, namely the maximum time budget for one iteration. Then, the master chooses a resource

budget T < Ts to each communication iteration k ≥ 2, which results in the iteration cost

ck ≤ T < Ts, for every k ≥ 2 (see lines 15-16) 3.

For k ≥ 2, each worker has to compute and transmit its local parameter during at most the

time budget T . This time budget enforces the competition between workers to transmit to the

master node. However, since T < Ts, some of workers fail to send their local parameters to

the master node. We introduce the set of Ma, which contains the indexes of the successful

workers in transmission at each iteration k (see line 19). Afterward, the master node updates

the global parameter by the local parameters it has received, w
j
k, j ∈ Ma, and then replaces

the missing local parameters by the values of the previous iteration, for the local parameters

w
j′

k = w
j′

k−1, j
′ /∈ Ma

4 and local functions f j′

k = f j′

k−1, j
′ /∈ Ma (see lines 21-22). This

replacement is important to guarantee the decreasing behavior of the loss function sequences

f(wk), see the following Lemma 2. This procedure requires that the master node keeps a

memory of all the previous local parameters. The remaining of Algorithm 2, lines 24-32, is

similar to lines 12-20 of Algorithm 1.

Lemma 2. Let f j
k be the local loss function at the communication iteration k for each worker

j ∈ [M]. Suppose that fj(w) be a convex function w.r.t. w. Then, Algorithm 2 guarantees the

decreasing behavior of f̂(wk), ∀k.

Proof: See Appendix A-B.

D. FedCau for Non-convex Loss Functions

In this part, we explain how to extend Algorithms 1 and 2 to scenarios with non-convex loss

functions. We consider FedAvg [5], in which every node j performs E ≥ 1 local iterations over

its local subset of data, ξjk ≤ |Dj| using mini-batches, before sending its local parameters to the

master node. The master node starts updating the global parameter wk+1 by averaging the local

parameters and broadcasts it to the workers. Furthermore, the master node calculates F̃ (wk)

by averaging the local loss functions of the worker nodes [5].

Different than Algorithms 1 and 2, we desire to design a cost-efficient algorithm which

optimizes G̃(K), an estimate of the multi-objective cost function G(K) defined as G̃(K) :=

βC(K)+(1−β)F̃(wK), where recall that C(K) is the iteration-cost function at K. We design

3Here, we allocate an equal portion of resource to each iteration. However, one can assign different portion of resources

to each iteration, which is out of the scope of this paper.

4For simplicity, we use the notation f
j

k := fj(wk).

15

Algorithm 3: Stochastic non-convex cost-efficient mini-batch FedCau.

1: Inputs: w0, (xij , yij)i,j , αk, M , {|Dj |}j∈[M], ρj ,

E, ξjk

2: Initialize: kuc = klc = 0, klmax = 2

3: Master node broadcasts w0 to all nodes

4: for k ≥ 1 do

5: Ma = {}

Each node j calculates:

6: for j ∈ [M] do

7: if k = 0 then

8: Randomly select a subset of data with

size ξjk

9: F j
0 :=

∑ξj
k

i=1 F (w0;xij , yij)/ξ
j
k

10: end if

11: Set w
j
0,k+1 = wk, F j

0,k+1 = F j
k

12: for i ∈ [E] do

13: Randomly select a subset of data with

size ξjk

14: w
j
i,k+1 ← wiE−1,k+1 −

αk∇wF
j
iE−1,k+1

15: F j
i,k+1 =

∑ξj
k

i=1 F (wj
i,k+1;xij , yij)/ξ

j
k

16: end for

17: Set w
j
E,k+1 = w

j
k+1, and F j

k+1 = F j
E,k+1

18: Send w
j
k+1 and F j

k+1 to the master node

19: end for

Master node calculates:

20: Ma ←Ma ∪ {Successful nodes}

21: F̃ (wk) :=
∑

j∈Ma
ρjF

j
k +

∑

j′ /∈Ma
ρj′F

j′

k−1

22: Update C(k)

23: if k ≤ 2 then

24: Set Fu(wk) = Fl(wk) = F̃ (wk)

25: else

26: if F̃ (wk) ≥ F̃ (wk−1) then

27: Set Fu(wk) = F̃ (wk)

28: if F̃ (wk) ≥ Fu(wk−1) then

29: kumax = max
ku<k
{ku|Fu(wku

) >

F̃ (wk)}

30: Update (Fu(wi))i=ku
max

,...,k as (11)

31: end if

32: Calculate δuk = Fu(wk)− Fu(wk−1)

33: Set Fl(wk) = Fl(wk−1) − δuk

34: Update (Gu(K))K=ku
max

,...,k and Gl(k)

35: else

36: if F̃ (wk) < Fl(wkl
max
) then

37: Set Fl(wk) = F̃ (wk)

38: Update (Fl(wi))i=kl
max

,...,k as (11)

39: Calculate δlk = Fl(wk)−Fl(wk−1)

40: Set Fu(wk) = Fu(wk−1) − δlk

41: (Gl(K))K=kl
max

,...,k and Gu(k)

42: klmax = k

43: else

44: Set Fu(wk) = F̃ (wk)

45: Calculate δuk = Fu(wk) −

Fu(wk−1)

46: Set Fl(wk) = Fl(wk−1)− δuk

47: Update Gu(k) and Gl(k)

48: end if

49: end if

50: end if

51: klc = min{K|Gl(K) > Gl(K − 1)}

52: kuc = min{K|Gu(K) > Gu(K − 1)}

53: if kuc 6= 0, klc 6= 0 then

54: Break and go to line 60

55: else

56: Master node broadcast wk+1 to the worker

nodes

57: Set k ← k + 1

58: end if

59: end for

60: Return klc, kuc , (wk)k=kl
c,...,k

u
c

such estimate since the stochastic nature of the sequences of (F̃ (wk))k, arises from the local

updates by ξjk ≤ |Dj| using mini-batches, results in a stochastic sequence of (G̃(k))k. This

stochastic sequence (G̃(k))k hinders the application of Algorithms 1, 2 and might lead to their

early stopping at a communication iteration that is not a local minimum. Therefore, we need

16

to develop an alternative algorithm.

We propose a causal approach by establishing an upper bound, Gu(K), and a lower bound,

Gl(K), for (G̃(k))k. The purpose of these two bounds is to obtain an interval of kc as ku
c ≤

kc ≤ kl
c, in which ku

c and kl
c represent the stopping communication iteration for Gu(K) and

Gl(K) functions, respectively. According to the definition of G(K) function, we define Gu(K),

and Gl(K) functions as

Gu(K) := βC(K) + (1− β)Fu(wK), (10a)

Gl(K) := βC(K) + (1− β)Fl(wK) , (10b)

where Fu(wK) and Fl(wK) represent the estimation of the loss function at upper and lower

bounds. Thus, in order to obtain the sequences of (Gu(k))k and (Gl(k))k, the master node

first needs to compute the upper and lower bounds for F̃ (wk). To do so, the master node

must guarantee the monotonic decreasing behavior of (Fu(wk))k and (Fl(wk))k to satisfy

Remark 1. In the following, we focus on how the master node obtains the bounds for F̃ (wk).

Algorithm 3 shows the steps required for the cost-efficient FedAvg with causal setting

and non-convex loss function F (w). Lines 3-18 summarize the local and global iterations of

FedAvg. Here, we introduceMa as the set of workers which successfully transmit their local

parameters to the master node (see line 20). We initialize Fu(wk) = Fl(wk) = F̃ (wk), k ≤ 2

for the first two iterations (see line 24). For iterations k ≥ 3, if the new value of loss function

fulfils F̃ (wk) ≥ F̃(wk−1), the algorithm updates Fu(wk) = F̃ (wk) (see line 27). Then, the

algorithm checks if F̃ (wk), which is now equal to Fu(wk), is greater than the previous value

of Fu(wk−1) (see line 28). This checking is important because we must develop a monotonic

decreasing sequence of Fu(wi)i=1:kuc . When F̃ (wk) ≥ F̃u(wk−1), the master node returns to

the history of Fu(wi)i=1:k−1 and checks for i < k, when the condition Fu(wi) > Fu(wk) is

satisfied. Since at each communication iteration k we carefully check the monotonic behavior

of Fu(wk), we are sure that if we find the proper maximum communication iteration i that

fulfils i < k, for which Fu(wi+1) < Fu(wk) < Fu(wi), we have the result of Fu(wj) <

Fu(wk), j < i. Let us define this communication iteration i as ku
max (see line 29). Thus, it is

enough to find such i to update the sequence of Fu(wi1), i1 = i, . . . , k.

Now, we need to update the sequences of Fu(wi2), i2 = ku
max, . . . , k to obtain the monotonic

decreasing upper bound. We choose the monotonic linear function because it satisfies the

sufficient decrease condition (see [29], Section 11.5). Therefore, we satisfy the decreasing

behavior for Fu(wk) and the upper bound behavior, which means that the maximum values

of F̃ (wk) are always lower than Fu(wk). Thus, we update the sequences of Fu(wi), i =

ku
max, . . . , k according to (11), with k1 = ku

max, k2 = k, and Fu(ki) = Flinear(ki), ki ∈ [k1, k2].

We define FApxt(k) as the linear approximation of F (wk) in an interval k ∈ [k1, k2]

FApxt(ki) = aki + b, k1 ≤ ki ≤ k2 (11)

17

where

a =
F̃ (wk2)− F̃ (wk1)

k2 − k1
, (12a)

b = F (wk2)− ak2. (12b)

Next, we need to update Fl(wk). Here, let us define the difference between two consecutive

values of Fu(wk) and Fu(wk−1) as δuk , and the difference between Fl(wk) and Fl(wk−1) as

δlk. Then, we update the corresponding values for (Gu(K))K=kumax,...,k and Gl(k), respectively

(see lines 33-34). Afterward, we need to check the condition at which F̃ (wk) < Fl(wklmax
),

where kl
max represents the last communication iteration at which the value of F̃ (wklmax

) has

been considered as Fl(wklmax
). If F̃ (wk) < F̃ (wklmax

), we need to update the lower bound

sequences (see lines 36-37) to avoid over-decreasing the lower bound function Fl(wk) by the

approximation of line 33. Subsequently, we need to calculate δlk = Fl(wk)− Fl(wk−1), then

update Fu(wk) = Fu(wk−1) − δlk and the value of kl
max = k (see lines 40-42).

The last condition to check is when Fl(wklmax
) < F̃ (wk) < F̃ (wk−1). In this condition, the

monotonic decreasing behavior of F̃ (wk) is satisfied, whereas the decreasing behavior is not

satisfied for the lower bound Fl(wk). Thus we set Fu(wk) = F̃ (wk), and δuk = Fu(wk) −

Fu(wk−1), Fl(wk) = Fl(wk−1)− δuk , and update Gu(k) and Gl(k) (see lines 44-47). Finally,

lines 51-60 show when to stop the algorithm.

E. Optimality and Convergence Analysis

In this subsection, we investigate the existence and optimality of the solution to problem (6)

and the convergence of the algorithms that return the optimal solutions. We are ready to give

the following proposition, which provides us with the required analysis of Algorithms 1, and 2.

First, we start with the monotonically behavior of G(K), K ≤ k∗. In practice, we have this

desired monotonically decreasing behaviour, as we show in the following proposition:

Proposition 1. Consider G(K) defined in Eq. (7). Define ∆k := fk−1 − fk, ∆0 = f0, by

choosing β as

0 <
1

1 + maxk ck
∆0

≤ β ≤
1

1 + mink ck
∆0

< 1, k ≤ k∗, (13)

the function G(K), K ≤ k∗, is non-increasing at K.

Proof: See Appendix A-C.

Remark 3. The previous proposition implies that, without loss of generality, we can assume

that maxk ck is high enough and mink ck is close to zero (setting the initial cost to zero for

example). Thus β can in practice vary between 0 and 1, without restricting the applicability

range of the multi-objective optimization.

18

Proposition 2. Optimization problem (6) has a finite optimal solution k∗.

Proof: See AppendixA-D.

The following Theorem clarifies an important relation between the non-causal and causal

solutions of Algorithm 1:

Theorem 1. Let k∗ be the solution to optimization problem (6), and let and kc denote the

approximate solution obtained in the non-causal and causal settings of Algorithm 1, and 2,

respectively. Then, the following statements hold

kc ∈ {k
∗, k∗ + 1} , (14a)

f(wkc) ≤ f(wk∗) , and (14b)

G(kc) ≥ G(k∗) . (14c)

Proof: See AppendixA-E.

Remark 4. Observe that k∗ and kc are fundamentally different. kc is obtained from Algo-

rithms 1 or 2, while k∗ is the optimal stopping communication iteration that we would compute

if we knew beforehand the evolution of the iterations of FedAvg algorithm (3), thus non-causal.

Nevertheless, we show that the computation of the stopping communication iteration kc that

we propose in the causal setting of Algorithms 1 and 2 is almost identical to k∗.

Theorem 1 is a central result in our paper, which shows that we can develop a simple

yet close-to-optimal algorithm for optimization problem (6). In other words, Algorithms 1

and 2 in the causal setting solve problem (6) by taking at most one extra communication

iteration compared to the non-causal to compute the optimal termination communication

iteration number.

Next, we focus on the convergence analysis of Algorithm 3. From Section III-D, we define

Fu(wk) and Fl(wk) as the upper and lower bound functions for F̃ (wk), respectively, such

that for every k ≥ 1, inequalities Fl(wk) ≤ F̃ (wk) ≤ Fu(wk) hold. The following remark

highlights the important monotonic behavior of Fu(wk) and Fl(wk).

Remark 5. The proposed functions Fu(wk) and Fl(wk) are monotonic decreasing w.r.t. k,

i.e., Fu(wk) < Fu(wk−1), and Fl(wk) < Fl(wk−1) for ∀k ≥ 1. These results hold because

we consider a linear function, which is monotonically decreasing, w.r.t. k, for updating each

value of Fl(wk) and Fu(wk) for k ≥ 1. Since the monotonically decreasing linear function

fulfils the sufficient decreasing condition (see [29], Section 11.5), we claim that Fu(wk) and

Fl(wk) are monotonic decreasing w.r.t. k.

Remark 5 indicates that we can apply the batch FedCau update of Algorithm 1 to obtain

the causal stopping point for Gu(K) and Gl(K) denoted as ku
c and kl

c, respectively. Therefore,

19

according to Proposition 2, there are finite optimal stopping iterations for minimizing Gu(K)

and Gl(K). Thus, Theorem 1 is valid for ku
c and kl

c, and we guarantee the convergence of

Gu(K) and Gl(K). The following Proposition characterizes the relation of causal stopping

iteration kc of G̃(K) with ku
c and kl

c.

Proposition 3. Let kc, ku
c , and kl

c be the causal stopping iterations for minimizing G̃(K),

Gu(K), and Gl(K), respectively. Then, the inequalities ku
c ≤ kc ≤ kl

c hold.

Proof: See Appendix A-F.

Proposition 3 characterizes an interval in which kc can take values to stop Algorithm 3.

As ku
c ≤ kc ≤ kl

c, it is enough that we find ku
c and terminate the algorithm. However, the

maximum allowable number of iterations is kl
c, which can be achieved if the resource budget

allows us. Using Proposition 3, we can obtain a sub-optimal kc by applying the FedCau update

Algorithm 3 to non-convex loss functions.

IV. APPLICATION TO COMMUNICATION PROTOCOLS

We consider wireless communication scenarios with a broadcast channel in the downlink

from the master node to the worker nodes. In the uplink, we consider three communication

protocols, slotted-ALOHA [35] and CSMA/CA [26] with a binary exponential backoff

retransmission policy [36], and OFDMA [27] by which the workers transmit their local

parameters to the master node. We assume that in each communication iteration k, local

parameters are set at the head of line of each node’s queue and ready to be transmitted. Thus,

upon receiving wk, each worker node j ∈ [M] computes its local parameter term w
j
k and puts

it in the head of line of its transmission queue. In a parallel process, each worker may generate

some background traffic and put them on the same queue, and send them by the first-in-first-out

queuing policy. We obtain the average end-to-end communication-computation latency at each

iteration k, denoted by ck, for slotted-ALOHA and CSMA/CA protocols: by taking an average

over the randomness of the protocols. Hence, at the end of each communication iteration K,

the network has faced the latency equal to
∑K

k=1 ck. It means that we consider each time

slot (in ms) and sum up the spent computation delay and time slots in each communication

iteration k to achieve ck, thus following the Algorithms 1, 2, and 3 to solve the optimization

problem (6).

Here, the critical point to consider is that we should choose a stable network in which the

packet saturation will not happen. Since we only consider the latency of transmission of local

parameters, which are in the head of line of queues, and we assume a stable network the

queue size does not play a role in the delay of the training procedure. However, the other

parameters, such as number of worker nodes M , transmission probability px, and packet arrival

20

probability pr at each time slot, impact on the training latency. Note that the local parameters

are the head of line packets at each communication iteration k and are not considered as the

background traffic packets arrived by probability of pr.

Recall the definition of the communication-computation cost components ℓ1,k, ℓ2,k, ℓ3,k and

ℓ4,k in Section II-A. For ℓ1,k, we consider a broadcast channel with data rate R bits/s and

parameter size of b bits (which includes the payload and headers), leading to a constant

latency of ℓ1,k = b/R s. Also, it is natural to assume that ℓ4,k is a given constant for

updating parameters at the master node [37]. The computation latency ℓj2,k in each iteration k

at each worker node j ∈ [M] is calculated as ℓj2,k = ajk|D
j
k|/ν

j
k, where ajk is the number of

processing cycles to execute one sample of data (cycles/sample), |Dj
k| ≤ |Dj| is subset of local

dataset each worker chooses to update its local parameter w
j
k, and νj

k is the central processing

unit (cycles/s) [38]. Without any loss of generality we consider that |Dj
k| = |Dj|, k = 1. . . . , K.

We assume that all the worker nodes start transmitting their local parameters simultaneously,

thus the network has to wait for the slowest worker to finish its computation. Therefore, ℓ2,k =

maxj∈[M] ℓ
j
2,k. The third term, ℓ3,k, is determined by the channel capacity, resource allocation

policy, and the network traffic. We characterize this term for two cases of batch and mini-

batch updates with a defined time budget. Further, every specific broadcast channel imposes

a particular R and b, which are not changing during the whole optimizing process. Therefore,

to compute the iteration-cost function
∑

k ck, we take into account the ℓ3,k and ℓ2,k terms and

ignore the latency terms of ℓ1,k, and ℓ4,k because they do not play a role in the optimization

problem (6) in the presence of shared wireless channel for the uplink. Note that in this paper,

without loss of generality, ck := ℓ2,k+ ℓ3,k, in which ℓ2,k is independent of the communication

channels/protocols. We wish to obtain the upper bound for communication delay when the

users in network follow MAC protocols, such as slotted-ALOHA and CSAMA/CA, to transmit

their local parameters of FedAvg algorithm (3) to the master node [39]–[41]. There are many

papers in the literature computing the average transmission delay for MAC protocols. However,

we have a specific assumption that at each communication iteration k, each worker node puts

its local parameter at the head of line in its queue and makes them ready for transmission.

Note that in FedAvg algorithm (3) the master node needs to receive all the local parameters to

update the new global parameter wk. Accordingly, we need to calculate the average latency of

the system while all workers must successfully transmit at least one packet to the master node.

The following Proposition establishes bounds of the average transmission delay ℓ3,k which we

use it in the numerical results.

Proposition 4. Consider random access MAC protocols in which the local parameters of

FedAvg algorithm (3) are head-of-line packets at each iteration k. Let M , px and pr be the

number of nodes, the transmission probability at each time slot, and the background packet

21

arrival probability at each time slot. Consider each time slot to have a duration of ts seconds.

Then, the average transmission delay, E{ℓ3,k} is bounded by
M−1
∑

i=0

tspi,i+1 ≤ E {ℓ3,k} ≤
M−1
∑

i=0

ts

{

pi,i+1 +
pi,i

(1− pi,i)2

}

, (15)

where

pi,i =p̂+ (1− px)
M−i, i = 0, 1

pi,i =iprpx

i−1
∑

j=1

(i− 1)!

j!(i− 1− j)!

{

pjr(1− px)
j(1− pr)

i−1−j
}

+ p̂+ (1− px)
M , i ≥ 2

and

pi,i+1 = (M − i) px(1−px)
M−i−1

{

i
∑

j=1

pjr(1− px)
j(1− pr)

i−j

}

,

p̂ is the probability of an idle time slot.

Proof: See AppendixA-G.

Proposition 4 introduces the bounds for transmission delay, thus for ck, while considering

slotted-ALOHA and CSMA/CA communication protocols. Recall that we defined ck = ℓ2,k +

ℓ3,k, then by considering the slowest worker in local computation, the iteration cost ck is

bounded by
M−1
∑

i=0

tspi,i+1+ min
j∈[M]

{

|Dj|a
j
k

νj
k

}

≤ ck ≤ |D|max
j∈[M]

{

ajk
νj
k

}

+ts

M−1
∑

i=0

{

pi,i+1 +
pi,i

(1− pi,i)2

}

, (16)

which helps us to design the communication-computation parameters for FedCau.

Finally, in OFDMA, we consider uplink transmissions in a single-cell wireless system with

s = 1, 2, . . . , Sc orthogonal subchannels [42]. Let hs
l , p

s
l be the channel gain and the transmit

power of link l on subchannel s by which worker j sends its local parameters to the master

node. Therefore, the signal to noise ratio (SNR) for the uplink is defined by SNR(psl , h
s
l) as

SNR(psl , h
s
l) =

pslh
s
l

σs
l

, (17)

The corresponding data rates (bps/Hz) is as Rp(SNR) =
∑Sc

s=1 log2(1 + SNR(psl , h
s
l)). The

master node randomly decides at each communication iteration k which worker should use

which subchannel link, and the remaining workers will not participate in the parameter

uploading at that iteration.

V. NUMERICAL RESULTS

In this section, we illustrate our results from the previous sections and we numerically show

the extensive impact of the iteration costs when running FedAvg algorithm (3) training problem

over a wireless network. We use a network with M worker nodes and simulation to implement

slotted-ALOHA, CSMA/CA (both with binary exponential backoff), and the OFDMA. In each

of these networks, we apply our proposed Algorithms 1, 2, and 3. Moreover, we apply our

proposed FedCau on top of existing methods from the literature, such as top-q and LAQ.

22

A. Simulation Settings

First, we consider solving a convex regression problem over a wireless network using a real-

world dataset. To this end, we extract a binary dataset from MNIST (hand-written digits) by

keeping only samples of digits 0 and 1 and then setting their labels to -1 and +1, respectively.

We then randomly split the resulting dataset of 12600 samples among M worker nodes, each

having {(xij , yij)}, where xij ∈ R
784 is a data sample i, which is a vectorized image at node

j ∈ [M] with corresponding digit label yij ∈ {−1,+1}. We use the following training loss

function [43]

f(w) =

M
∑

j=1

ρj

|Dj |
∑

i=1

1

|Dj|
log

(

1 + e−w
Txijyij

)

, (18)

where we consider that each worker node j ∈ [M] has the same number of samples, namely

|Dj| = |Di| = |D|/M, ∀i, j ∈ [M].

We implement the network with M worker nodes performing local updates of w
j
k, ∀j ∈ [M]

and imposing computation latency of ℓ2,k to the system. We assume a synchronous network in

which all worker nodes start the local computation of w
j
k simultaneously right after receiving

wk−1. Note that the latency counting of ck at each iteration k starts from the beginning of the

local computations until the uplink process is complete. Regarding the computation latency,

we consider νk ∈ [106, 3× 109] cycles/s, and ak = [10, 30] cycle/sample for k = 1, . . . ,M . In

slotted-ALOHA, we consider a capacity of one packet per slot and a slot duration of 1 ms.

In CSMA/CA, we consider the packet length of 10 kb with a packet rate of 1 k packets per

second, leading to a total rate of 1 Mbps. We set the duration of SIFS, DIFS, and each time

slot to be 10 µs, 50 µs, and 10 µs respectively [44] and run the network for 1000 times. In

OFDMA set up, we consider the uplink in a single cell system with the coverage radius of

rc = 1 Km. There are Lp cellular links on Sc subchannels. We model the subchannel power

gain hs
l = ζ/r3, following the Rayleigh fading, where ζ has an exponential distribution with

unitary mean. We consider the noise power in each subchannel as −170 dBm/Hz and the

maximum transmit power of each link as 23 dBm. We assume that Sc = 64 subchannels, the

total bandwidth of 10 MHz, and the subchannel bandwidth of 150 KHz. We define ck as the

most considerable latency caused by the slowest worker to send the local parameters to the

master node.

B. Performance of FedCau Update from Algorithms 1, 2 and Non-causal Approach

Fig. 1 characterizes the non-causal and causal behaviors along with the performance of

FedCau update of Algorithms 1 and 2 for slotted-ALOHA and CSMA/CA protocols. The

general network setup has M = 100, px = 1, pr = 0.2, and the mini-batch time budget of

T = 0.3s. We observe that while the behavior of f(wk) is similar across the protocols in

23

0 10 20 30
0.4

0.5

0.6

0.7

0.8

Communication iteration k

L
o
ss

fu
n
ct

io
n
f
(w

k
)

Slotted-ALOHA batch Slotted-ALOHA non-causal batch Slotted-ALOHA causal batch Slotted-ALOHA mini-batch

Slotted-ALOHA non-causal mini-batch Slotted-ALOHA causal mini-batch CSMA/CA batch CSMA/CA non-causal batch

CSMA/CA causal batch CSMA/CA mini-batch CSMA/CA non-causal mini-batch CSMA/CA causal mini-batch

OFDMA, mini-batch

(a) f(wk).

0 10 20 30
0

0.2

0.4

0.6

Communication iteration k

C
(K

)

(b) C(K).

0 10 20 30

0.5

1

1.5

2

Communication iteration k

G
(K

)

(c) G(K).

10 20 30

0.2

0.4

0.6

0.8

1

Communication iteration k

T
es

t
ac

cu
ra

cy

(d) Test accuracy.

Fig. 1: Illustration of non-causal and FedCau batch update of Algorithm 1 and FedCau mini-batch update of Algorithm 2

with T = 0.3s the presence of slotted ALOHA and CSMA/CA, and OFDMA for M = 100, px = 1, and pr = 0.2. a) Loss

function f(wk) b) Iteration-cost function C(K) c) Multi-objective cost function G(K), and d) Test accuracy.

10 30 50 70 100
0

0.1

0.2

0.3

Communication iteration k

C
(k

c
)

T = 0.06

T = 0.08

T = 0.12

(a) Causal iteration-cost

M = 50.

10 30 50 70 100

0.2

0.4

0.6

0.8

1

Communication iteration k

T
es

t
ac

cu
ra

cy

T = 0.06

T = 0.08

T = 0.12

(b) Mini-batch test accu-

racy M = 50.

10 20 30 40
0

0.1

0.2

0.35

Communication iteration k

C
(k

c
)

T = 1

T = 2

T = 2.2

(c) Causal iteration-cost,

M = 100.

10 20 30 40

0.2

0.4

0.6

0.8

1

Communication iteration k

T
es

t
ac

cu
ra

cy

T = 1

T = 2

T = 2.2

(d) Mini-batch test accu-

racy M = 100.

Fig. 2: Illustration of the mini-batch FedCau update of Algorithm 2 for CSMA/CA, px = 0.8, pr = 0.01. a) iteration-cost

function C(kc) for M = 50, T = 0.06, 0.08, 0.12s, b) Test accuracy for M = 50, T = 0.06, 0.08, 0.12s, c) Iteration-cost

function C(kc) for M = 100, T = 1, 2, 2.2s, and d) Test accuracy for M = 100, T = 1, 2, 2.2s.

Fig. 1(a), the iteration-cost function C(K) of the batch update for slotted-ALOHA is much

larger among all the setups in Fig. 1(b). This behavior affects the multi-objective function

G(K) in Fig. 1(c) and causes an earlier stop. However, the test accuracy is not sacrificed as

shown in Fig. 1(d). From Fig. 1, we conclude that the batch update of Algorithm 1 satisfies the

causal setting, and preserves the test accuracy while optimizing both the loss function f(wk)

and the latency over the communication protocols.

Fig. 2 represents the mini-batch FedCau update of Algorithm 2 for CSMA/CA with px = 0.8,

pr = 0.01 and M = 50, 100. Figs. 2(a)-2(b) show the results for M = 50, with Ts = 0.12s, and

T = 0.06, 0.08, 0.12s. In Fig. 2(a), the final latency for the three time budgets are similar, and

Fig. 2(b) shows the similarity in the test accuracy. Figs. 2(c)-2(d) reveal the same procedure

for M = 100, Ts = 2.2s, and T = 1, 2, 2.2s. Fig. 2(c) shows that for larger network size M

and time budget (in comparison with Ts), the final latency increases with negligible change

in the final test accuracy. Hence, choosing the time budget close to Ts provides better test

accuracy with smaller overall latency for CSMA/CA.

24

0 0.2 0.4 0.6 0.8 1
1

10

30

45

Transmission probability px

S
to

p
p
in

g
it

er
at

io
n
k

k∗, slotted-ALOHA kc , slotted-ALOHA k∗, CSMA/CA kc , CSMA/CA

(a) k∗ and kc vs px.

0 0.2 0.4 0.6 0.8 1

0.97

0.98

0.99

1

Transmission probability px

T
es

t
ac

cu
ra

cy

(b) Test accuracy vs px.

0 0.2 0.4 0.6 0.8 1

20

40

Arrival probability pr

S
to

p
p
in

g
it

er
at

io
n
k

(c) k∗ and kc vs pr .

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Arrival probability pr

T
es

t
ac

cu
ra

cy

(d) Test accuracy vs pr.

20 40 60 80 100

20

60

100

200

Network size M
S

to
p
p
in

g
it

er
at

io
n
k

(e) k∗ and kc vs M .

5 20 40 60 80 100
0.85

0.9

0.95

1

Network size M

T
es

t
ac

cu
ra

cy

(f) Test accuracy vs M .

Fig. 3: Illustration of the batch FedCau update Algorithm 1: optimal stopping communication iteration k∗ and causal stopping

communication iteration kc vs transmission probability px, arrival probability pr, and network size M .

C. Impact of Communication Parameters on The Performance of FedCau

Fig. 3 shows the impact of communication parameters, the transmission px, and arrival

probabilities pr, and the network size M on the non-causal stopping iteration k∗ and the

causal stopping iteration kc obtained from batch FedCau update Algorithm 1 along with the

corresponding test accuracy. Figs. 3(a)-3(b) respectively characterize the stopping iterations

and test accuracy of the FL algorithm (3) (with E = 1, and considering the whole local

data size) considering M = 50, and pr = 0.01. We note that the transmission probability px

has more negative impacts when we regulate the channel by slotted-ALOHA. Figs. 3(c)-3(d)

represent the same results, but by swiping the background packet arrival probability pr, when

M = 50 and px = 0.8. The numerical results shows that when facing a higher arrival traffic,

slotted-ALOHA performs better than CSMA/CA. Finally, we characterize the same results by

varying the network size M , when px = 0.8 and pr = 0.01. Fig. 3(e) represents that slotted-

ALOHA and CSMA/CA have similar decreasing behavior with increasing M . However, as

seen in Fig. 3(f), slotted-ALOHA reduces the test accuracy in larger network size.

Fig. 4 characterizes the iteration-cost function C(K) for the same setup we mentioned in

Fig. 1. We observe that the iteration-cost function for slotted-ALOHA is larger than CSMA/CA,

as we see in Figs. 4(a) and 4(c). On the other hand, the iteration-cost function for CSMA/CA

increases exponentially when the background arrival probability pr increases, as shown in

Fig. 4(b). This result also holds for the bounds of the iteration cost we obtained in Eq. (15),

as we see in Fig. 4.

25

0 0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

0.5

Transmission probability px

C
(K

)
C(k∗), Slotted ALOHA C(kc), Slotted ALOHA C(k∗), CSMA/CA

C(kc), CSMA/CA C(kc), Upper Bound C(kc), Lower Bound

(a) Iteration-cost C(k∗) and C(kc)

vs px.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Arrival probability pr

C
(K

)

(b) Iteration-cost C(k∗) and C(kc)

vs pr.

20 40 60 80 100
0

0.2

0.4

0.6

0.8

Network size M

C
(K

)

(c) Iteration-cost C(k∗) and C(kc) vs

M .

Fig. 4: Illustration of the batch FedCau update Algorithm 1: iteration-cost C(k∗) and C(kc) and the bounds of Eq. (15) vs

transmission probability px, arrival probability pr, and network size M .

10 20 30 40 50
0

0.25

0.5

0.75

1

Communication iteration k

L
o
ss

fu
n
ct

io
n
s

F̃ (wk)

Fu(wk)

Fl(wk)

(a) One trial loss functions.

10 20 30 40 50
0

0.25

0.5

0.75

1

Communication iteration k

L
o
ss

fu
n
ct

io
n
s E

{

F̃ (wk)
}

E {Fu(wk)}

E {Fl(wk)}

(b) Loss functions after 100 realiza-

tions.

10 20 30 40 50
0

0.25

0.5

0.75

1

Communication iteration k

M
u
lt

i-
o
b
je

ct
iv

e
fu

n
ct

io
n
s

E

{

G̃(K(ε))
}

E {Gu(K(ε))}

E {Gl(K(ε))}

(c) G(K) after 100 realizations.

10 20 30 40 50
0

0.25

0.5

0.75

1

Communication iteration k

T
es

t
ac

cu
ra

cy

Accuracy by kc

Accuracy by ku
c

Accuracy by kl
c

Non-causal accuracy

(d) Test accuracy.

Fig. 5: Illustration of mini-batch FedCau update of Algorithm 3 for non-convex loss functions with CSMA/CA, M = 50,

px = 0.8, and pr = 0.01.

D. Performance of Non-convex FedCau from Algorithm 3

Fig. 5 characterizes the FedCau update of Algorithm 3 for CSMA/CA with M = 50, px =

0.8, E = 2 and pr = 0.01. We consider F (w) to be the prediction error of a neural network

with two layers (one hidden layer) and softmax activation function over the MNIST dataset of

handwritten digits. Fig. 5(a) shows the loss function F̃ (wk) and the corresponding upper and

lower bound functions Fu(wk), Fl(wk), respectively, against communication iteration k. We

observe that the bounds are monotonic decreasing w.r.t. k and cover the fluctuations of F̃ (wk).

Fig. 5(b), shows theses functions after Algorithm 3 performs 100 realizations of the proposed

cost-efficient implementation of the FL algorithm (3) to decrease the effect of stochastic noise

and show the smoother bounds for F̃ (w). The results in Fig. 5(b) clearly represent the upper

and lower bound functions after averaging over the stochastic noise. Fig. 5(c) shows the

26

TABLE II: Comparison between FedCau and FedAvg with and without LAQ and Top-q, M = 50, and Kmax = 200.

Method Stop iteration Total cost (Mbits) Test accuracy (%)

FedCau LAQ, b = 2 57 4.56 94.2
FedCau LAQ, b = 10 43 16.92 87.8
FedCau Top-q, q = 0.1 49 6.19 92.4

FedCau Top-q, q = 0.6 43 32.4 80.9
FedCau 56 70.24 96.4

FedAvg, LAQ, b = 2 200 16 98
FedAvg LAQ, b = 10 200 78.7 98.7
FedAvg, Top-q, q = 0.1 200 25 98.9

FedAvg Top-q, q = 0.6 200 150.72 97.5
FedAvg 200 250.88 99.02

expected value of the multi-objective functions G̃(K), Gu(K) and Gl(K) after 100 realizations,

and Fig 5(d) represents the test accuracy for this set up and the non-causal scenario. The

corresponding stopping iterations are obtained as ku
c = 39, kc = 43, and kl

c = 48, which

represent the sub-optimal interval for the causal stopping communication iteration kc. Fig. 5

clearly shows that Algorithm 3 provides a sub-optimal interval close to the optimal interval kc

while training non-convex loss function. Although the interval obtained by Algorithm 3 is sub-

optimal, the final test accuracy results regarding the interval are very close to the test accuracy

results of non-causal scenario. Thus, the sub-optimal solution obtained by Algorithm 3 is fully

reliable for the non-convex loss functions scenario.

E. Performance of FedCau Update from Algorithm 1 on Top of LAQ and Top-q

Here, we choose LAQ because it achieves the same linear convergence as the gradient

descent in the strongly convex case, while effecting major savings in the communication

in terms of transmitted bits and communication iterations [7]. Among all the compression

methods, we choose top-q sparsification because it suffers least from non-i.i.d. data, and the

training still converges reliably even if every client only holds data from one class. Besides,

applying top-q for the logistic regression classifier trained on MNIST, the convergence does

not slow down [8].

Despite the previous numerical results, which characterize the overall latency as the iteration-

cost ck, k ≥ 1, here we consider the number of bits per each communication-iteration as

ck, k ≥ 1 for these methods. In LAQ, the number of bits b shows the maximum amount

of bits, element-wise, for the local parameters. Besides, in the top-q method, we change the

percentage of the dimension of each local parameter, as 0 < q ≤ 1, but considering that

each element contains 32 bits. TABLE I shows the comparison between FedAvg and FedCau

with and without considering the communication-efficient methods LAQ and Top-q. The test

accuracy for FedCau with LAQ, b = 2 is close to FedCau and FedAvg with LAQ, b = 2.

However, the amount of spent communication bits is order of magnitudes less than these two

methods. The exact same argument holds for FedCau Top-q, q = 0.1 with FedAvg Top-q,

q = 0.1 and FedAvg. We conclude that our proposed FedCau works quite well in the presence

27

of different communication cost, latency or bits, and it gives us more efficient training even

when we apply it on the top of the existing methods.

VI. CONCLUSION

In this paper, we proposed a framework to design cost-aware FL over networks. We

characterized the communication-computation cost of running iterations of generic FL algo-

rithms over a shared wireless channel, regulated by slotted-ALOHA, CSMA/CA, and OFDMA

protocols. We posed the communication-computation latency as the iteration-cost function of

FL, and showed that increasing the network size and background traffic may prohibit the

application of FL over wireless networks. We optimized the iteration-termination criteria to

minimize the trade-off between FL achievable objective value and the overall cost of running

the solver. In order to attain this purpose, we proposed a simple causal setting, named FedCau,

utilized in two convex scenarios for batch and mini-batch updates, and proposed a solution

for non-convex scenarios as well.

The numerical results showed that in the same background traffic, time budget, and network

situation, CSMA/CA has less communication-computation cost than slotted-ALOHA. We also

showed that the mini-batch FedCau update could perform more cost-efficiently than the batch

update by choosing proper time budgets. Moreover, the numerical results of the non-convex

scenario provided a sub-optimal interval of the causal optimal solution close to the optimal

interval, which provides many opportunities for non-convex FL problems. At the end, we

applied our proposed FedCau method on top of the existing methods like top-q sparsification

and LAQ with characterizing the iteration-cost as number of communication bits. We concluded

that FedCau provides us a better and more efficient training even when we apply it on the top

of the well-known efficient methods.

Our future work will extend the FedCau update of non-convex scenario and design

communication protocols for cost efficient FL. We will also extend this work to consider

optimal power allocation jointly with causal stopping points, which will investigate the problem

of using FL low-power in devices such that the training stops at a causal point to avoid further

unnecessary iterations.

APPENDIX A

A. Proof of Lemma 1

The proof is obtained from the definition of discrete derivative of a discrete function

G(K) [33]. Consider K1 such that G(K1−1) ≥ G(K1), and G(K1+1) ≥ G(K1). Therefore,

G(K1) is the minimum value of G(K), K = 1, . . . , K1 + 1, and k∗ = K1.

28

B. Proof of Lemma 2

As fj(w), j ∈ [M] is convex, the sequence of f j
k , j ∈ [M], k ≥ 1, (see Remark 1) converges

to a global minima for each fj(w), j ∈ [M]. Consider the procedure of updating each f̂(wk) =
∑

j∈Ma
ρjf

j
k +

∑

j′ /∈Ma
ρj′f

j′

k−1 in Algorithm 2 which replaces the missing parameter f j′

k , j
′ /∈

Ma with f j′

k−1 of the previous iteration. Note that in the first iteration, all the workers were

successful in sending their local parameters to the master node, which results in existing at least

one local parameter for each worker in the master node’s memory. According to Remark 1,

f j
k ≤ f j

k−1, thus, if all the local parameters of worker j ∈ [M] are available in the master

node,
∑M

j=1 ρjf
j
k ≤

∑M
j=1 ρjf

j
k−1. This inequality provides us with

M
∑

j=1

ρjf
j
k ≤

∑

j∈Ma

ρjf
j
k +

∑

j′ /∈Ma

ρj′f
j′

k−1 ≤
M
∑

j=1

ρjf
j
k−1, (19)

where
∑

j∈Ma
ρj +

∑

j′ /∈Ma
ρj′ = 1. Inequalities (19) show that f(wk) ≤ f̂(wk) ≤ f(wk−1).

C. Proof of Proposition 1

Define ∆k := fk−1 − fk, ∆0 = f0, and ηk := ck/∆k. According to the diminishing return

rule, we obtain ∆k ≤ ∆k−1. For the sake of mathematical modelling, we express the amount

of the cost of each communication iteration k, ck, as O(ck) ≤ O(∆k/z) ≤ O(∆0/z), where

z ≥ 1 is the intended scale factor of cost. However, this mapping should be fixed before

starting the computation of G(K). As we do not know the future information, we have to

design the mapping with the very first information received from workers. We assume that

the master node designs such a mapping at the beginning of communication iteration k = 1

and does not change it during the training. Sine at the communication iteration k = 1, the

information ∆0 and c1 are available at the master node, the mapping has to be determined

by these information to lead to a causal design. Thus, defining Exk as the total expenses (in

seconds or bits), the master node defines the mapping function as Mmap : (Exk,∆0, z) −→ ck

and finds ck named iteration-cost. Next, by the definition of G(K) in (7), the scalarization

parameter β which satisfies Lemma 1, takes the value between

0 <
1

1 + ηk∗
≤ β ≤

1

1 + ηk
, k ≤ k∗. (20)

Inequalities in (20) are non-causal and need the information of ∆k and ck from the future

communication iterations. Thus, we must demonstrate (20) by some causal information and

bounds on ck and ∆k for k = 1, . . . , k∗. Considering the overall latency when applying MAC

protocols for communication iterations, we obtained the bounds on ck in (16). Thus, the interval

0 <
1

1 + maxk ck
∆0

≤ β ≤
1

1 + mink ck
∆0

< 1, k ≤ k∗, (21)

in which ∆0 ≥ ∆k, k ≥ 1 is the only causal information about ∆k that is available at k = 1.

29

D. Proof of Proposition 2

The proof is ad-absurdum. Let us assume that k∗ −→ ∞, which means there is no

optimal stopping communication iteration to solve (6). Using the descent property of FedAvg

algorithm (3), which imposes f(w1) ≤ f(w2) ≤ . . . ≤ f(wk∗), together with k∗ −→ ∞,

we have that f(wk∗) converges to f ∗, f(wk∗) −→ f ∗ < {f(wk)}k. Besides, the inequality

G(K+1) < G(K) is still held because the algorithm has not found the optimal communication

iteration in which the G(K) is minimized. As a result, when k∗ −→ ∞, we also have

G(k∗) < G(k∗ − 1), which results in
∑k∗

k=1 ck <
∑k∗−1

k=1 ck, thus ck∗ < 0. This is in

contradiction with our assumption that ck=1,2,... are positive. We conclude that there is a finite

k∗. Therefore,there is a finite kc for the optimization problem (6).

E. Proof of Theorem 1

In the beginning of the iterations, the master node sets ǫ = +∞ to ensure a proper running

of the iterations. Inequality G(K + 1) < G(K) implies that the loss function is still in the

decreasing region and we have not found the minimum yet. As soon as the sign changes,

the algorithm would terminate by setting the value of ǫ = 0, the current k as kc. Then, the

algorithm reports the corresponding values for G(kc) and f(wkc). Clearly, the penalty is up to

one additional communication iteration when we observe an increase in G(K) and the master

node terminates the process, leading to kc = k∗ + 1, ∀k∗ < Kmax, and by setting k∗ = Kmax,

then kc = k∗ as well. Given (14a), the “descent property” of FedAvg algorithm (3) yields (14b).

Then, inequality (14c) is a direct consequence of the definition of k∗ in (6).

F. Proof of Proposition 3

First, we need to show that kl
c ≥ ku

c . Consider the definition of Gu(K) and Gl(K) in Eq. (10)

in which C(K) and β is the same as in the definition of G̃(K). Recall that Fl(wk) ≤ F̃ (wk) ≤

Fu(wk), ∀k = 1, . . . , K. According to Algorithm 3, lines 23-25, the value of Fl(wk) =

Fu(wk), k ≤ 2, and each value of these functions at k ≥ 3 gets updated at the same iteration

to fulfil Fl(wk) < Fu(wk), ∀k = 3, . . . , K. We consider each stopping values of kl
c and ku

c as

the causal stopping iterations of Gl(K) and Gu(K). This proof is ad-absurdum. We assume

that kl
c < ku

c and try to find a counterexample. Without any loss of generality, we consider

the upper and lower bounds function to be linear function as we defined in Eq. (11), i.e.

kl
max = ku

max = 2, and Fl(wk) < Fu(wk), k ∈ [3, K]. Define δkFu := Fu(wk) − Fu(wk−1)

and δkFl := Fl(wk)− Fl(wk−1), for k ∈ [3, K]. As Fl(wk) and Fu(wk) are linear functions,

δkFu = Fu(w3) − Fu(w2), k ∈ [4, K], and δkFl = Fl(w3) − Fl(w2), k ∈ [4, K]. Since

Fl(w2) = Fu(w3) and Fl(w3) ≤ Fu(w3), then δkFl ≤ δkFu ≤ 0. Besides, δKGl := Gl(K)−

Gl(K−1) = cK+δKFl and δKGu := Gu(K)−Gu(K−1) = cK+δKFu result in δKGl ≤ δKGu.

30

Therefore, defining ku
c and kl

c as the causal stopping iterations of Gu(K) and Gl(K), at

which δkuc Gu > 0 and δklcGl > 0. By assuming ku
c > kl

c, we obtain that δkFu ≤ δkFl which is

in contradiction with the explanation above. Therefore, we conclude that kl
c ≥ ku

c .

Next, we should prove that kc ∈ [ku
c , k

l
c]. This proof is ad-absurdum. First, assume kc > kl

c.

However, consider the counter example in which F̃ (wk) = Fl(wk), k = 1, . . . , K, k 6= 3 and

F̃ (w3) > Fl(w3). It means that all the lower bound is the same as the loss function, except

for communication iteration k = 3. Thus, the case of kl
c 6= 3, implies that kc = kl

c, since

G̃(K) = Gl(K), K 6= 3. If kl
c = 3, we have kc = 3, since it is obvious that G̃(3) > G̃(2) and

G̃(K) > G̃(2), K ≥ 4 since G̃(K) = Gl(K), K 6= 3 and Gl(K) > Gl(2), K ≥ 4. Therefore

this example shows that it is not always true that kc > kl
c, thus results in kc ≤ kl

c. All the

mentioned arguments with considering Fu(wk) and opposite inequalities are applicable to the

case of assuming kc < ku
c . Thus, we conclude that kc ∈ [ku

c , k
l
c].

G. Proof of Proposition 4

Consider a set of sates defined as S := {0, 1, . . . ,M} where each state i ∈ S represents

the nodes which have successfully transmitted their local parameters to the master node. The

critical point to consider is that once a node successfully sends its local parameter (or its head-

of-line packet) to the master node, the state i jumps to the sate i+1. While if the successfully

transmitted packet is one of the background packets, the system still stays in the state i. Due

to this reason, we consider the current state as the number of worker nodes which have been

successful in transmitting at least one packet. As a result, the possible states in our proposed

approach is from 0 (none of the nodes have transmitted packets) to M (all of the nodes have

transmitted packets). The first step to calculate the average communication delay E {ℓ3,k}, is

to obtain the transition probabilities between the states, namely pi,i and pi,i+1. We consider

each probability to show the corresponding action at each time slot, and denote them as:

• pi,i: the probability that no new node transmits. Thus, we have one of the following

events: 1) No successful transmission in the system, 2) Idle time slot, or Just one node

j ∈ {1, 2, . . . , i} transmits a background packet successfully.

• pi,i+1: the probability of a new node transmits successfully;

where these probabilities are mathematically defined in Proposition 4.

Next, we consider that each of the probabilities of pi,i and pi,i+1 lasts for ti,i, ti,i+1 ∈ Z
+

time slots, respectively. We know that ti,i+1 = 1 as each successful transmission spends one

time slot. Then, consider ts s to be the time slot duration, in which we calculate an upper

bound for the average communication latency E {ℓ3,k} when ti,i → +∞ as:

E {ℓ3,k} ≤
M−1
∑

i=0

ts

{

pi,i+1 + lim
ti,i→+∞

ti,i
∑

u=0

upui,i

}

, (22)

31

where limti,i→+∞

∑ti,i
u=0 up

u
i,i = pi,i/(1− pi,i)

2. Then,

E {ℓ3,k} ≤
M−1
∑

i=0

ts

{

pi,i+1 +
pi,i

(1− pi,i)2

}

. (23)

Next, the lower bound is obtained easily by considering tii = 0, thus
M−1
∑

i=0

tspi,i+1 ≤ E {ℓ3,k} . (24)

APPENDIX B

TWO SPECIAL CASES

In this section, we explain our proposed problem formulation by considering two extreme

cases via the following example:

Example 1. Consider β = 0 and β = 1 as special cases:

• When β = 0, optimization problem (6) reduces to

k∗ ∈ argmin
K

f(wK), (25)

in which the iteration cost ck does not play any role in optimization problem (6), and

consequently k∗ → ∞ would be the solution of (6). In other words, due to lack of

any penalty in running iterations over the communication network and convexity of the

loss function, the algorithm iterates until f(wk) → f(w∗) = f ∗. However, finding this

solution may entail a very large iteration cost, ignored in (25). It follows for every K ≥ 1

that G(k∗) ≤ G(K).

• When β = 1, optimization problem (6) reduces to

k∗ ∈ argmin
K

K
∑

k=1

ck, (26)

in which the loss function f(wk) of (1) plays no role in optimization problem (6).

Consequently, (26) minimizes only the iterating cost over the communication network,

with a trivial solution of k∗ = 0 (stop without any iteration) due to the positively of

sequence (ck > 0)k.

REFERENCES

[1] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,” Science, vol. 349, no. 6245,

pp. 255–260, 2015.

[2] O. Simeone, “A very brief introduction to machine learning with applications to communication systems,” IEEE

Transactions on Cognitive Communications and Networking, vol. 4, no. 4, pp. 648–664, 2018.

[3] J. Park, S. Samarakoon et al., “Wireless network intelligence at the edge,” Proc. IEEE, vol. 107, no. 11, pp. 2204–2239,

Nov. 2019.

[4] P. Kairouz et al., “Advances and open problems in federated learning,” 2019.

[5] J. Konečnỳ, H. B. McMahan et al., “Federated learning: Strategies for improving communication efficiency,” arXiv

preprint arXiv:1610.05492, 2016.

32

[6] N. C. Thompson, K. Greenewald et al., “Deep learning’s diminishing returns: The cost of improvement is becoming

unsustainable,” IEEE Spectrum, vol. 58, no. 10, pp. 50–55, 2021.

[7] J. Sun, T. Chen et al., “Lazily Aggregated Quantized Gradient (LAQ) innovation for communication-efficient federated

learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 4, pp. 2031–2044, 2022.

[8] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and communication-efficient Federated Learning from

non-i.i.d. data,” IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 9, pp. 3400–3413, 2020.

[9] S. Caldas, J. Konečny, H. B. McMahan, and A. Talwalkar, “Expanding the reach of federated learning by reducing

client resource requirements,” arXiv preprint arXiv:1812.07210, 2018.

[10] Q. Fan and N. Ansari, “Application aware workload allocation for edge computing-based IoT,” IEEE Internet of Things

Journal, vol. 5, no. 3, pp. 2146–2153, 2018.

[11] Z. Yang, M. Chen et al., “Energy efficient federated learning over wireless communication networks,” IEEE Transactions

on Wireless Communications, pp. 1–1, 2020.

[12] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD with memory,” in Advances in Neural Information

Processing Systems, 2018, pp. 4447–4458.

[13] S. Magnússon, C. Enyioha, N. Li et al., “Convergence of limited communications gradient methods,” IEEE Transactions

on Automatic Control, vol. 63, no. 5, pp. 1351–1371, May 2017.

[14] S. Di, D. Tao et al., “Efficient lossy compression for scientific data based on pointwise relative error bound,” IEEE

Transactions on Parallel and Distributed Systems, vol. 30, no. 2, pp. 331–345, 2018.

[15] K. Yuan, Q. Ling, and Z. Tian, “Communication-efficient decentralized event monitoring in wireless sensor networks,”

IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 8, pp. 2198–2207, 2014.

[16] J. Wangni, J. Wang et al., “Gradient sparsification for communication-efficient distributed optimization,” in Advances

in Neural Information Processing Systems, 2018, pp. 1299–1309.

[17] T. Chen, G. Giannakis et al., “LAG: Lazily aggregated gradient for communication-efficient distributed learning,” in

Advances in Neural Information Processing Systems, 2018, pp. 5050–5060.

[18] J. Sun, T. Chen et al., “Communication-efficient distributed learning via lazily aggregated quantized gradients,” in

Advances in Neural Information Processing Systems, 2019, pp. 3370–3380.

[19] K. Hsieh, A. Harlap et al., “Gaia: Geo-distributed machine learning approaching {LAN} speeds,” in 14th {USENIX}

Symposium on Networked Systems Design and Implementation ({NSDI} 17), 2017, pp. 629–647.

[20] H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD for non-convex optimization with faster convergence and less

communication,” arXiv preprint arXiv:1807.06629, 2018.

[21] S. Luo, X. Chen et al., “HFEL: Joint edge association and resource allocation for cost-efficient Hierarchical Federated

Edge Learning,” IEEE Transactions on Wireless Communications, vol. 19, no. 10, pp. 6535–6548, 2020.

[22] H. S. Ghadikolaei, S. Stich, and M. Jaggi, “LENA: Communication-efficient distributed learning with self-triggered

gradient uploads,” in Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, ser.

Proceedings of Machine Learning Research, vol. 130. PMLR, 13–15 Apr 2021, pp. 3943–3951.

[23] A. Defazio, F. Bach, and S. Lacoste-Julien, “SAGA: A fast incremental gradient method with support for non-strongly

convex composite objectives,” in Advances in Neural Information Processing Systems, Z. Ghahramani, M. Welling,

C. Cortes, N. Lawrence, and K. Q. Weinberger, Eds., vol. 27. Curran Associates, Inc., 2014.

[24] A. Mahmoudi, H. S. Ghadikolaei, and C. Fischione, “Cost-efficient distributed optimization in machine learning over

wireless networks,” in IEEE International Conference on Communications (ICC), 2020.

[25] ——, “Machine learning over networks: Co-design of distributed optimization and communications,” in IEEE

International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2020.

[26] E. Ziouva and T. Antonakopoulos, “CSMA/CA performance under high traffic conditions: Throughput and delay

analysis,” Computer communications, vol. 25, no. 3, pp. 313–321, 2002.

[27] D. Bankov, A. Didenko et al., “OFDMA uplink scheduling in IEEE 802.11ax networks,” in 2018 IEEE International

Conference on Communications (ICC), 2018, pp. 1–6.

[28] X. Li, K. Huang et al., “On the convergence of FedAvg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

[29] I. Griva, S. G. Nash, and A. Sofer, Linear and Nonlinear Optimization (2. ed.). SIAM, 2008.

33

[30] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: numerical methods. Prentice hall Englewood

Cliffs, NJ, 1989, vol. 23.

[31] A. Balatsoukas-Stimming and C. Studer, “Deep unfolding for communications systems: A survey and some new

directions,” in 2019 IEEE International Workshop on Signal Processing Systems (SiPS). IEEE, 2019, pp. 266–271.

[32] S. Boyd and L. Vandenberghe, Convex Optimization. USA: Cambridge University Press, 2004.

[33] H.-G. Weigand, “A discrete approach to the concept of derivative,” ZDM – Mathematics Education, vol. 46, no. 4, pp.

603–619, 2014.

[34] L. Bottou, F. Curtis et al., “Optimization methods for large-scale machine learning,” SIAM Review, vol. 60, no. 2, pp.

223–311, 2018.

[35] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data networks, second edition. Prentice-Hall International New

Jersey, 2004, vol. 2.

[36] Y. Yang and T. Yum, “Delay distributions of slotted ALOHA and CSMA,” IEEE Transactions on Communications,

vol. 51, no. 11, pp. 1846–1857, Nov. 2003.

[37] F. S. Samani, H. Zhang, and R. Stadler, “Efficient learning on high- dimensional operational data,” in 15th IEEE

International Conference on Network and Service Management (CNSM), 2019.

[38] V. D. Nguyen, S. K. Sharma, T. X. Vu, S. Chatzinotas, and B. Ottersten, “Efficient federated learning algorithm for

resource allocation in wireless IoT networks,” IEEE Internet of Things Journal, 2020.

[39] F. Malandra and B. Sansò, “A markov-modulated end-to-end delay analysis of large-scale RF mesh networks with

time-slotted ALOHA and FHSS for smart grid applications,” IEEE Transactions on Wireless Communications, vol. 17,

no. 11, pp. 7116–7127, 2018.

[40] Y. Yang and T.-S. Yum, “Delay distributions of slotted ALOHA and CSMA,” IEEE Transactions on Communications,

vol. 51, no. 11, pp. 1846–1857, 2003.

[41] E. Casini, R. De Gaudenzi, and O. Del Rio Herrero, “Contention resolution diversity slotted ALOHA (CRDSA): An

enhanced random access schemefor satellite access packet networks,” IEEE Transactions on Wireless Communications,

vol. 6, no. 4, pp. 1408–1419, 2007.

[42] T. D. Hoang and L. Bao Le, “Joint prioritized scheduling and resource allocation for OFDMA-based wireless networks,”

IEEE Transactions on Wireless Communications, vol. 17, no. 1, pp. 310–323, 2018.

[43] K. Koh, S.-J. Kim, and S. Boyd, “An interior-point method for large-scale ℓ1-regularized logistic regression,” Journal

of Machine Learning Research, vol. 8, no. Jul, pp. 1519–1555, 2007.

[44] “IEEE Standard for Information technology—Telecommunications and information exchange between systems Local

and metropolitan area networks—Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) Specifications,” IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012), pp. 1–3534, Dec

2016.

34

	I Introduction
	I-A Literature Survey
	I-B Contributions

	II System Model and Problem Formulation
	II-A Federated Learning
	II-B Problem Formulation

	III Solution Algorithms
	III-A Preliminary Solution Steps
	III-B Non-causal Setting
	III-C FedCau for Convex Loss Functions
	III-D FedCau for Non-convex Loss Functions
	III-E Optimality and Convergence Analysis

	IV Application to communication Protocols
	V Numerical Results
	V-A Simulation Settings
	V-B Performance of FedCau Update from Algorithms 1, 2 and Non-causal Approach
	V-C Impact of Communication Parameters on The Performance of FedCau
	V-D Performance of Non-convex FedCau from Algorithm 3
	V-E Performance of FedCau Update from Algorithm 1 on Top of LAQ and Top-q

	VI Conclusion
	Appendix A
	A-A Proof of Lemma 1
	A-B Proof of Lemma 2
	A-C Proof of Proposition 1
	A-D Proof of Proposition 2
	A-E Proof of Theorem 1
	A-F Proof of Proposition 3
	A-G Proof of Proposition 4

	Appendix B: Two Special Cases
	References

